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ABSTRACT

Resolution of both the extent and mechanism of lateral heterogeneity in the upper
mantle constrains the nature and scales of mantle convection. Oceanic regions are of
particular interest as they are likely to provide our closest glimpse at the patterns of
temperature anomalies and convective flow in the upper mantle because of their young
age and simple crustal structure relative to continental regions. Our objectives in this
thesis are to determine lateral variations in the seismic velocity and atténuation structure
of the lithosphere and asthenosphere beneath the oceans, and to combine these
seismological observations with the data and theory of geoid and bathymetry anomalies
in order to test and improve current models for seafloor spreading and mantle
convection. We concentrate on determining variations in mantle properties on a scale of
about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity,
geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density,
and we formulate inversions to combine quantitatively these different data and search for
a common origin. Variations in mantle density can be either of thermal or compositional
origin and are presumably related to mantle convection and differentiation.

By means of a large data base of digital seismograms and waveform cross-
correlation and spectral ratio techniques, we have measured SS-S differential travel time
residuals and differential attenuation in order to determine lateral variations in upper
mantle structure beneath the Mid-Atlantic Ridge and East Pacific Rise. Differental
travel times of such phases as SS and S with identical source and receiver have the
advantage that residuals are likely to be dominated by contributions from the upper
mantle near the surface bounce point of the reflected phase (SS). Under this assumption,
differential SS-$ travel time residuals are mapped at the SS bounce points as a means of
delineating lateral variations in mantle structure. After removing the signature of
lithosphere age, we find evidence for long-wavelength variations in SS-S residuals along
the Mid-Atlantic Ridge. The dominant wavelength of these variations is 1000 to 2000
km. These travel time anomalies correlate qualitatively with along-axis variations in
bathymetry and geoid height. We formulate a joint inversion of travel time residual,



geoid height, and bathymetry under the assumption that all arise from variations in upper
mantle temperature or bulk composition (parameterized in terms of Mg#). The inversion
employs geoid and topography kernels which depend on the mantle viscosity structure.
Inversion for temperature perturbations alone provides good fits to travel time and geoid
data. The fit to topography, which is likely dominated by unmodeled crustal thickness
variations, is not as good. The inversions for temperature favor the presence of a thin
low viscosity layer in the upper mantle and temperature perturbations concentrated at
depths less than 300 km. Compositional variations alone are unable to match the travel
time and geoid or bathymetry data simultaneously. A joint inversion for temperature
and composition provides good fits to both geoid and travel time anomalies.
Temperature variations are + 50 K and compositional variations are * 0.5-3 % Mg# for
models with the temperature variations uniformly distributed over the uppermost 300 km
and the compositional variations either distributed uniformly over the same interval or
concentrated at shallower depths. The magnitudes of these variations are consistent with
the chemistry and geothermometry of dredged peridotites along the Mid-Atlantic Ridge.

Differential travel times of SS-S pairs in the east central Pacific show several
differences from the north Atlantic. The most obvious difference is that the travel ime
residuals are significantly larger than in the Atlantic, even at a fixed age. The travel time
- age relation is weaker in the Pacific, although this may be partially atributable to the
fact that we have not sampled a large range of plate ages in the eastern Pacific. In the
Atlantic our results are not consistent with the presence of a simple pattern of azimuthal
anisotropy, while in the Pacific the data are consistent with the presence of weak
anisotropy in the upper mantle. It has been suggested that anisotropy may be more
pronounced at fast spreading rates than at slow spreading rates both in the lithosphere
(due to a rate dependence of the mechanism for orienting olivine crystals in the
lithosphere) and the asthenosphere (because the asthenospheric flow beneath fast moving
plates is likely to take the form of a progressive simple shear which can induce a lattice
preferred orientation of olivine crystals), and our results are consistent with this
suggestion. There is substantial ambiguity in our anisotropy measurements for the
Pacific, however, due to a poor sampling of azimuths, so that it is also possible that
lateral heterogeneity rather than azimuthal anisotropy is producing the observed
azimuthal pattern. Sampling at a more uniform distribution of azimuths should make this
result less ambiguous, and as more seismic stations are deployed at new geographic
locations our chances of resolving this issue will improve.

Inversion of travel time residuals, geoid, and bathymetry data for the eastern Pacific
indicates that compositional variations alone are inadequate to match all of the data
simultaneously, similar to our results for the north Atlantic. Temperature variations
alone, however, produce significant variance reduction. The inversion solutions indicate
excess temperature in the vicinity of the Galapagos hotspot in the range 50 - 150 K.
Further analysis is needed to determine the effects of subduction zone structure and
possible crustal thickening in the eastern Cocos plate region.

As a complement to the study of travel times, we have measured SS-S differential
attenuation in the north Atlantic region. Mapping seismic Q in the upper mantle is an
important tool for assessing mechanisms of lateral heterogeneity because the attenuation
of seismic waves is sensitive to variations in temperature and to partial melting.
Differential attenuation is positively correlated with SS-S travel time residual. Both
differential attenuation and travel time residual decrease with increasing seafloor age.
The age dependence of SS-S travel time residual can be explained entirely by the cooling
of the oceanic lithosphere, i.e., contributions from the asthenosphere or from a mantle
melt fraction are not required. On the assumption that plate cooling also dominates the



variation of differential attenuation with age, we derive an empirical Q-!-temperature
relation for the oceanic lithosphere. The variation of Q-1 with temperature that we derive
is not as strongly dependent on temperature as that observed in laboratory studies.
Systematic long-wavelength (1000-6000 km) variations in upper mantle differential
attenuation are evident along the axis of the Mid-Atlantic Ridge. These variations
correlate approximately with long-wavelength variations in shear wave travel time
residuals and are attributed to along-axis differences in upper mantle temperature.

Thesis Supervisor: Sean C. Solomon
Title: Professor of Geophysics
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Chapter 4. Upper Mantle Structure in the Vicinity of the East Pacific Rise
Inferred From Shear Wave Differential Travel Times, Geoid, and
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Chapter 1

Introduction

It is important to measure lateral variations in the Earth's mantle because of the
key role of this information in the formulation and testing of theories of the interior
dynamics of the Earth. The mantle convection associated with the escape of heat from the
Earth's interior gives rise to global tectonic activity, but the exact forms and scales of
convection and the interaction of convective processes with the lithosphere are still
controversial. Mid-ocean ridges are of particular interest as they are known to be sites of
upwelling and elevated temperature. The excess temperatures have expressions in the
seismic velocity and density fields. The focus of this study is to examine lateral
variations in upper mantle properties near mid-ocean ridges on a scale of about 1000 km,
comparable to the thickness of the upper mantle. The broad questions we seek to address
include the following: What are the variations in mantle convection at this scale? Are
they observable as anomalies in temperature-sensitive physical properties? Are such
differences in temperature manifested as differences in melt production and thus in the
chemistry of the mantle residuum? If so, are these compositional variations observable?

Learning about the large-scale structure of the Earth has become a
multidisciplinary effort. Consequently in this thesis we adopt a multidisciplinary
approach to the problem of resolving lateral variations in mantle properties at the 1000-km
scale. Specifically we combine seismic data with geoid and bathymetry anomalies. Itis
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important when combining these different data to consider dynamic effects, possible
compositional variations, and the spatial scales of convection.

Seismology has made great contributions to the resolution of lateral velocity
differences in the mantle, and advances in techniques and a steady improvement in the
capabilities of global seismic networks have greatly increased our knowledge of the
Earth's interior. No longer can the Earth be treated as a rigid body possessing radial
symmetry; large lateral variations have been observed in the upper mantle as well as in the
crust from both regional and global studies. Global tomographic models such as M84C
[(Woodhouse and Dziewonski, 1984] utilize long-period surface waves to describe the
Earth’s upper mantle heterogeneity ona global scale, up to spherical harmonic degree and
order 8 (A= 5000 km). In this thesis we seek to examine lateral variations on a somewhat
shorter scale (wavelengths of about 1000 to 5000 km). To do this we make use of body
waves rather than surface waves, and rather than performing a global analysis we
concentrate on ocean ridge environments.

The body waves used in this study are direct and surface-reflected long-period S
waves. Differential travel times and attenuation are measured using SS and S wave pairs
from the same source and station. Much progress has been made in resolving upper
mantle heterogeneity through differential travel times [Sipkin and Jordan, 1976, 1980a;
Stark and Forsyth, 1983; Butler, 1979; Kuo et al., 1987; Woodward and Masters, 1991].
Among the advantages of differential rather than absolute times is that source and receiver
effects are approximately common to both phases and are thus largely eliminated by
differencing. If we assume that the lower mantle is relatively homogeneous and that the
portions of the wave paths in the upper mantle are steep, the differential travel time
anomaly is associated with upper mantle heterogeneity centered beneath the surface
bounce point of the reflected (SS) phase. This technique is thus well suited to the

investigation of horizontal variations in upper mantle structure.
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Other data sensitive to variations in mantle properties at depth include oceanic
bathymetry and geoid height. Variations in mantle density can be either of thermal or
compositional origin and, like seismic velocity, are presumably related to mantle
convection and differentiation. Geoid (or gravity) and topography have become the most
commonly used tools for mapping out and constraining models of upper mantle
convection [e.g., Anderson et al., 1973, McKenzie and Bowin, 1976; McKenzie, 1977,
McKenzie et al., 1980, Parsons and Daly, 1983; Buck and Parmentier, 1986; Craig and
McKenzie, 1986]. Several workers [Dziewonski et al., 1977, Nakanishi and Anderson,
1984; Tanimoto and Anderson, 1984; Stark and Forsyth, 1983; Dziewonski, 1984; Kuo
et al., 1987] have noted oom:lations‘of geoid and travel time (or velocity structure) at a
number of different wavelengths, although only a few [Hager et al., 1985; Hager and
Clayton, 1989; Hager and Richards, 1989] have combined observational seismology with
geoid anomalies in a quantitative and dynamically consistent manner.

Since very different convective flows can produce the same geoid and surface
topography, the inversion of these data alone for the thermal or compositional source
function is nonunique. Because this inverse problem is not well posed, most studies
have concentrated on forward modelling, i.¢., varying the parameters of a simple model
until a good fit to the data is achieved. With this approach, there is no guarantee that the
set of parameters which give the best fit to the data is unique and that the correct solution
has been isolated. Including seismic data provides additional constraints which are
sufficient to allow us to formulate simple one-dimensional inversions.

In Chapter 2 we describe a comprehensive study of differential travel times in the
north Atlantic region. We present details of the measurement procedure we use to obtain
SS-S measurements from seismograms recorded by the GDSN network, as well as other
aspects of the collection and reduction of these data. We examine the relationship of these

measurements to such factors as seafloor age and upper mantle anisotropy, and we
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examine the correlation with geoid and bathymetry. We develop techniques for
quantitatively combining the observed travel time residuals with geoid and bathymetry
anomalies in a joint inversion for upper mantle thermal and compositional variations.
Since the inversion includes dynamic geoid and topography kemnels which depend upon a
given viscosity model, inversions can be carried out with a range of different viscosity
models in order to determine which are the most consistent with the data. We invert
separately and jointly for distributions of thermal perturbations and compositional
variations which best produce the observed travel time, geoid, and bathymetry.

In Chapter 3 we examine differential attenuation between the phase pairs SS and
S, with SS bounce points in the north Atlantic, and we examine the possible relations
between Qs-! and the temperature of the upper mantle. Earlier studies with body waves
suggest that the upper mantle beneath mid-ocean ridges should display a significandy
greater than average level of S-wave absorption [e.g., Molnar and Oliver, 1969,
Solomon, 1973). We examine differential shear wave attenuation in the north Atlantic
and its variation with lithosphere age, and we utilize thermal models to interpret the
observations in terms of an empirical relation between differential attenuation and
temperatm';:. This work is a complement to the study of SS-S differential travel times
presented in Chapter 2. The data show clear evidence for a decrease in Qg'! in the upper
mantle with increasing plate age. There are also systematic along-axis variations in
differential attenuation, and we address whether these variations might be the result of
along-axis differences in the characteristic temperature of the upper mantle, such as those
obtained from the inversions of travel time residuals, geoid, and bathymetry described in
Chapter 2.

In Chapter 4 we examine SS-S differential travel times, geoid, and bathymetry in
the region of the East Pacific Rise in the east-central Pacific. Comparision of the results
from the East Pacific Rise with those from the Mid-Adantic Ridge provides us with the
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opportunity to compare and @smt upper mantle properties beneath fast and slow
spreading ridges. Several authors [e.g., Duschenes and Solomon, 1977, Stark and
Forsyth, 1983; Zhang and Tanimoto, 1990b] have found that shear wave velocities in the
eastern Pacific are significantly lower than those observed in either the Atlantic or Indian
Oceans. In addition, the presence of anisotropy has been found to be more pronounced
in the Pacific upper mantle than in the Atlantic upper mantle (Montagner and Tanimoto,
1990], consistent with predictions of models of shear-induced alignment of olivine
crystals [McKenzie, 1979; Ribe, 1989].

In Chapter 5 we discuss some conclusions of this thesis relating to the
mechanisms of heterogeneity in the oceanic upper mantle. We raise several questons
generated by the analyses in this work. Finally, we suggest directions for future research
designed to help answer these questions. We feel that further application of the
techniques developed in this thesis will allow constraints to be placed on upper mantle
viscosity structure, the presence of partial melt, and the mechanisms of lateral
heterogeneity on both global and regional scales. These techniques will allow the theories
of mantle convection to be tested and sharpened with abundant and diverse data.
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Chapter 2

Joint Inversion of Shear Wave Travel Time Residuals and Geoid
and Depth Anomalies for Long-Wavelength Variations in Upper
Mantle Temperature and Composition along the Mid-Atlantic
Ridge

INTRODUCTION

Seismic velocity and density of upper mantle material are expected to be functions
of temperature and composition. The delineation of long wavelength variations in these
physical properties thus provide important constraints on mantle convection, crust-mantle
differentiation, and mantle chemical heterogeneity. In this study we determine lateral
variations in upper mantle temperature and composition along the Mid-Atlantic Ridge
through the combined inversion of shear wave differential travel times, geoid height, and
bathymetric depth anomalies.

The advent of seismic tomography has led to a number of three-dimensional maps
of lateral variations in seismic velocity in the upper mantle, and several such models of the
north Atlantic region have been developed, both as parts of global studies [e.g.,
Woodhouse and Dziewonski, 1984; Nakanishi and Anderson, 1984; Tanimoto, 1990] and
through regional investigations of long-period surface waves [e.g., Honda and Tanimoto,
1987; Mocquet et al., 1989; Mocquet and Romanowicz, 1990]. With surface wave
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methods each wave samples the average vertical variation in upper mantle structure along
its path, but because of the long wavelengths involved the inversion of phase or group
velocity from many paths tends to smooth out lateral variations. Body wave travel times
can provide independent information about upper mantle heterogeneity at potentially shorter
horizontal scales than surface waves can resolve, and progress has been made in the
determination of lateral heterogeneity in the north Atlantic through the use of both
differential and absolute travel times of body waves (Kuo et al., 1987; Grand, 1987,
1989].

The travel times used in this study are differential times of the body wave phase
pair SS-S (Figure 2.1). Differential travel times of shear wave pairs are well suited to the
study of upper mantle heterogeneity [Sipkin and Jordan, 1976, 1980a; Stark and F orsyth,
1983; Butler, 1979; Kuo et al., 1987; Woodward and Masters, 1991] and have the
advantage that source and receiver effects are approximately common to both phases and
are thus largely eliminated by differencing. Under the assumption that the lower mantle is
relatively homogeneous and that the portions of the wave paths in the upper mantle are
steep, the differential travel time anomaly can be associated with upper mantle structure
within a small volume centered beneath the surface bounce point of the reflected (SS)
phase. This technique is thus well suited to the investigation of horizontal variations in
structure, but the resolution of variations with depth is poor.

Oceanic bathymetry and geoid height data are sensitive to variations in mantle
density at depth. Such variations can be either thermal or compositional in origin and, like
seismic velocity, are presumably related to mantle convection and differentiation. Geoid
(or gravity) and topography have become the most commonly used tools for mapping out
and constraining models of upper mantle convection [e.g., Anderson et al., 1973,
McKenzie and Bowin, 1976; McKenzie, 1977; McKenzie et al., 1980, Parsons and Daly,
1983; Buck and Parmentier, 1986; Craig and McKenzie, 1986]. In addition, measurement
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of the admittance (the spectral ratio of geoid to topography) has been widely utilized to
estimate the depth and mode of compensation of oceanic swells and plateaus [e.g., Warts et
al., 1985, Cazenave et al., 1988; Sandwell and MacKenzie, 1989; Sheehan and McNus,
1989]. Several workers [Dziewonski et al., 1977; Nakanishi and Anderson, 1984;
Tanimoto and Anderson, 1984; Stark and Forsyth, 1983; Dziewonski, 1984; Kuo et al.,
1987] have noted correlations of geoid and travel time (or velocity structure) at a number of
different wavelengths, although only a few [Hager et al., 1985; Hager and Clayton, 1989,
Hager and Richards, 1989] have combined observational seismology with geoid anomalies
in a quantitative and dynamically consistent manner.

In this study we present the first formal inversion of geoid, depth, and travel time
anomaly data for lateral variations in upper mantle temperature and composition along the
Mid-Adantic Ridge. Given a distribution of temperature or density perturbations in the
upper mantle, the forward problem of calculating differential travel time, geoid, and depth
anomalies is straightforward. This forward problem forms the basis for a joint linear
inversion of these three types of observations under the assumption that all arise from
parameterized long-wavelength variations in upper mantle temperature or composition.
Results of a set of inversions carried out under different assumptions regarding the depth
extent of lateral heterogeneity and the mantle viscosity structure are compared with other

constraints on variations in mantle temperature and degree of melt removal.

MEASUREMENT OF DIFFERENTIAL TRAVEL TIMES

The seismic data used in this study consist of long-period S and SS phases
obtained from the Global Digital Seismic Network (GDSN) [Peterson et al., 1976;
Peterson and Hust, 1982]; the Network of Autonomously Recording Seismographs
(NARS), a linear broadband array in western Europe [Nolet and Vlaar, 1982]; and several



17

broadband stations from the global GEOSCOPE network [Romanowicz et al., 1984]. A
list of stations used in this study is presented in Table 2.1. We use only transversely
polarized (SH) seismograms (rotated from N-S and E-W components) to avoid interference
from the SKS phase and contamination from P-SV conversions at the base of the crust and
other near-surface discontinuities. Recent work by Gee and Jordan [1989] suggests that
travel times depend on the frequency band used in the analysis. In order to maintain a self-
consistent data set for our study, additional processing is applied to data from the NARS
and GEOSCOPE arrays in order to mimic the instrument response of the longer period
GDSN stations. This processing allows us to measure travel times from a set of
seismograms that all have essentially the same frequency response. Data from the NARS
and GEOSCOPE arrays are decimated (with a low-pass antialiasing filter) to a common
sampling interval of 1s. The data are further filtered using a noncausal 3-point
Butterworth filter [Rader and Gold, 1967] with a frequency bandpass of 0.01 - 0.20 Hz.
This additional filtering greatly improves the signal-to-noise ratio of the SS phase.

A waveform cross-correlation method is utilized to determine the differential travel
time between the phases S and SS [Butler, 1979; Stark and Forsyth, 1983; Kuo et al.,
1987]. The procedure involves the construction of a "synthetic" SS pulse from S and the
evaluation of the cross-correlation function between the real and synthetic windowed SS
phases (Figure 2.2). The synthetic SS pulse is created from § in the following manner.
The S pulse is windowed and attenuated (with attenuation parameter t*= 3 s) {Grand and
Helmberger, 1984; Kuo et al., 1987] to account for the additional time SS travels in the
mantle, and then a 1/2 phase shift (Hilbert transform) is applied to the attenuated S pulse to
simulate the frequency-dependent phase shift which the SS wave undergoes at an internal
caustic [Choy and Richards, 1975). The differential time is obtained from the peak of the
cross correlation between the synthetic SS constructed from the S wave and the real SS.
The residual SS-S times are obtained by subtracting the observed differential time from that
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predicted by the PREM Earth model [Dziewonski and Anderson, 1981] and correcting for
Earth ellipticity [Dziewonski and Gilbert, 1976] and SS bounce point bathymetry. Our
convention is that negative residuals are indicative of either early SS or late S.

Constant window lengths of 120 s are used for both the S and SS phases. In
general, the observed differential travel times vary by as much as 1 s depending on how S
and SS are windowed. Our modelling with synthetic seismograms indicates that
emphasizing the onset of the SS waveform can lead to bias for bounce points in areas of
oceanic sediments. The effect of sediments at long periods is to produce precursory
arrivals from reflections at the base of the sediments and late arrivals from waves which
travel through the low-velocity sediments and are reflected at the crust-water interface. The
net effect, after convolving the crustal response with the long-period GDSN instrument
response, is that the time center of the SS phase is effectively unchanged but the pulse is
broadened both at the front and at the back. In our procedure the use of a constant window
containing the entire SS pulse should yield differential travel times that are little affected by
the presence of sediments.

DATA

The north Atlantic is an ideal area for conducting a differential travel time study in
terms of the geographic distribution of available events and stations at suitable distances.
The range in source-receiver separation was taken to be 55° to 86" to ensure separation of S
and ScS$ at the longer distances and to avoid triplication in SS at shorter distances. The SS
and S phases bottom from about 670 km to 2300 km depth. We performed a search over
all earthquakes in the Harvard centroid moment tensor (CMT) catalog for the years 1977-
1987 [Dziewonski et al., 1981; Dziewonski and Woodhouse, 1983] and over all GDSN,
NARS, and GEOSCOPE digital seismic stations in order to find event-station pairs of the
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proper epicentral distance which provide SS bounce points in the North Atlantic region.
Epicenters were obtained from the Bulletin of the International Seismological Centre (ISC)
for events occurring before 1987 and from the "Preliminary Determination of Epicenters"
of the U.S. National Earthquake Information Service (NEIS) for events occurring in 1987.
The final distribution of sources and stations used to measure SS-S differential travel times
is shown in Figure 2.3. The majority of data in this study comes from records of
equatorial fracture zone carthquakes at North American and European stations, north and
central Atlantic events at North American stations, Central American events at European
stations, and Mediterranean and European earthquakes at North American stations.

This search yielded over 2000 event-station pairs with the proper epicentral
separation. After winnowing the list because of station inoperation, poor signal to noise
ratio for the phases of interest, and interfering events, the final data set consists of nearly
500 SS-S differential travel time residuals with bounce points in the north Adantic (Figure
2.4). Uncertainties are determined for each measurement following the procedure outlined

in Appendix 2.A. A tabulation of all residuals is given in Appendix L.

RESULTS

We interpret the variations in SS-S differential travel times in terms of lateral
velocity variations within the crust and upper mantle beneath the surface reflection points of
the SS wave path. Kuo et al. [1987] and Woodward and Masters [1991] tested the validity
of this assumption by plotting absolute S and SS residuals against SS-S residuals. They
found that S and SS-S residuals are uncorrelated while SS and SS-S residuals are strongly
correlated, indicating that the assumption is justified. The validity of this assumption is
further supported by the strong correlation of SS-S times with surface tectonic features in

the vicinity of the SS bounce point. The residuals are further interpreted in terms of such
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upper mantle processes as lithospheric aging, flow-induced anisotropy, and along-axis

heterogeneity in mantle structure.

Lithospheric Aging

Cooling and thickening of the lithosphere should yield a tendency toward an
increase in seismic velocity with increasing lithospheric age. A linear regression
experiment was performed to examine the correlation of the SS-S residuals with seafloor
age. A gridded map of seafloor ages was constructed for the north Atlantic from the
magnetic anomalies of Klitgord and Schouten [1986] and ages assigned according to Kent
and Gradstein [1986] and Klitgord and Schouten [1986). The isochrons of Sclater et al.
[1981] were used in a few regions which were not covered by the Klitgord and Schouten
[1986] data set. To obtain a representative age value for the region spanning approximately
one horizontal wavelength of the incident (SS) wave, an average seafloor age was
estimated for a 1° x 1° box centered on each SS bounce point. To reduce scatter,
measurements whose bounce point depths differed by more than 2500 m from the depth
predicted by the Parsons and Sclater [1977] plate cooling model were excluded from the
final age regression. Although each SS wave samples the upper mantle at a finite range of
lithosphere ages, we expect that the different travel time anomalies contributed by the S
path segments on the younger and older sides of the bounce point approximately cancel so
that the age at the SS bounce point is appropriate to the associated SS-S residual.

The SS-S residuals for the north Atlantic are consistent with the expectation of an
increase in seismic velocity with seafloor age. For bounce points between 0° and 60°N
latitude, the coefficient derived by linear regression of residual with square root of age is
40.68 +0.08 s My-12 from 0 to 100 My, with a linear correlation coefficient of -0.85
(Figure 2.5). However, residuals from 60 - 90°N do not seem to be strongly correlated

with lithospheric age. This may be due to the fact that this area is more tectonically



complicated than ‘normal’ oceanic lithosphere [e.g., White, 1988; Zehnder and Muster,
1990], includes several ridge jumps, is in close proximity to continental regions, and does
not closely follow the age-depth relation of Parsons and Sclater [1977]. Compared with
the residuals for 0-60°N, those from 60-90°N are anomalously negative at young ages and
anomalously positive at older ages. The slope of SS-S residual vs. square root of age for
data from O to 60°N is smaller than that inferred from S delays of intraplate earthquakes in
the Atlantic by Duschenes and Solomon [1977] (two-way S delay = -1.2 s My-172) and that
reported by Kuo et al. [1987] (-1 s My12). It is larger, however, than the global average
obtained by Woodward and Masters [1991] (-0.51 s My-172), We find that the residual-age
relation is not constant over the entire north Atlantic, so that some of these variations in
slope may reflect real geographic differences.

We may compare the variation of SS-S residual versus age with that due only to
lithospheric cooling. For a lithospheric structure given by the plate cooling model of
Parsons and Sclater [1977], we may convert temperature variations to differences in shear
velocity vs by adopting a value for dvs/dT, which we take to be uniform and equal to -0.6
m/s K-! [McNutt and Judge, 1990]. For a horizontal slowness typical of the teleseismic S
and SS waves of this study (0.1375 s/km), the slope of the line best fitting the SS-S travel
time delay versus age given by the plate cooling model over 0-100 My is then -0.64 £ 0.07
s My-172, a result indistinguishable from the observed slope. This agreement indicates that
the dependence of travel time residual on plate age can be explained entirely by lithospheric
cooling.

The trend of the travel time residual versus lithospheric age relation changes at
about 100 My. After 100 My, the residuals appear to flatten out (Figure 2.5), in the same
sense as the plate cooling model of Parsons and Sclater [1977]. Such a pattern may reflect
the unmodeled effect of increased sediment or crustal thickness, or, as suggested by
Parsons and Sclater [1977] may be partially the result of secondary convection which



22

supplies heat to the base of the plate at older ages. To avoid possible biases associated with
any of these effects we shall restrict our analysis to data with bounce points on lithosphere
less than 100 My. To look for other systematic variations in the residuals, we correct for
age by removing the linear relation shown by the solid line in Figure 2.5. This correction
is effectively a normalization of residuals to 22-My-old lithosphere (the zero crossing of the

regression line).

Anisotropy

Another systematic velocity variation that has been suggested as a possible
contributor to residual SS-S travel times is azimuthal anisotropy. Kuo et al. [1987]
examined this phenomenon in detail and concluded that alignment of olivine cystals in the
asthenosphere created a significant pattern of azimuthal anisotropy in SS-S residuals
mcasured in the Atlantic region. We have also searched for evidence of azimuthal
anisotropy with our data set.

Backus [1965] and Crampin [1977] demonstrated, from the general form of body
wave anisotropy in a weakly anisotropic medium, that the linear form of the azimuthal

variation of velocity is given by
V2=Ag+Ajcos 20 + Ay sin 20 + A3 cos 40 + Ay sin 40 (2.1)

where V is the body wave velocity, the A, are linear functions of the elastic moduli, and 6
is an azimuth, defined for our problem by the angle between the great circle path and the
direction to geographic north measured at the SS bounce point. Equation (2.1) was further
simplified by Kuo et al. [1987] and parameterized in terms of travel time residuals:

R =Ry + R cos 20 + R sin 20 + R3 cos 40 + R4 sin 40 (2.2)



where R is the travel time residual and the R, are constants. By fitting a function of this
form to our age~corrected measurements we can determine if our data are consistent with
the presence of anisotropy.

We have conducted several tests of azimuthal anisotropy with our travel time data.
We performed least squares inversions to determine 26 and 48 patterns which provide best
fits to the age-corrected SS-S residuals. The anisotropy indicated by our regression
experiments differs significantly from the preferred model of Kuo et al. [1987] both in
magnitude and in phase (Figure 2.6). Our results indicate that for the 20 model the slow
direction for SS-S is N4*W and the peak-to-peak magnitude of the effect is less than 1 s;
for the 48 model the slow directions are N32°W and N58°E and the magnitude is 2.5 s; for
the joint 20 and 40 model the slow direction is N32°W and the magnitude is just under 3 s.
Kuo et al. [1987] obtained a peak-to-peak variation with azimuth of 5-7 s and a slow
direction at N13°W. The slowest residuals in the Kuo et al. [1987] study were from north-
south paths, i.c., nearly along the ridge, and the fastest residuals were from northeast-
southwest-trending paths with bounce points north of the Azores-Gibraltar plate boundary
(an area not;ad to be anomalously fast in their study), so their reported anisotropy may have
been at least partly the result of unmodelled upper mantle heterogeneity. Our inversion for
a 20 pattern of anisotropy provided a variance reduction of only 2%, compared with 20%
for a 40 pattern, and 22% for a combined 26 and 46 pattern. On the basis of these values
of variance reduction and the number of free parameters involved, our results suggest that
there is no single coherent pattern of upper mantle anisotropy in the north Atantic. The
latest anisotropic upper mantle models obtained from surface wave tomography [Montagner
and Tanimoto, 1990] also show a complex pattern of anisotropy in the region. Any
azimuthal anisotropy in the asthenosphere induced by plate motions in the north Atlantic

may be heterogeneous because the three plates in the region are slow-moving and the return
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flow is not closely related to plate divergence [Hager and O'Connell, 1979, 1981;
Parmentier and Oliver, 1979].

Spatial Pasterns of Age-corrected Residuals

After removal of the dependence on seafloor age, a plot of SS-S travel time
residuals at the SS surface reflection point (Figure 2.7) shows several interesting features.
Perhaps the most striking is that residuals in the western Adantic north of about 35° N are
on average nearly 4 s more negative than those to the south. This feature is also noticeable
in Figure 2.4 but is more obvious after age-dependence is removed. A similar change at
approximately this latitude was noted for SS-S residuals with bounce positions on the
castern side of the Mid-Atlantic Ridge by Kuo et al. [1987] and was attributed to a change
in upper mantle structure across the Azores-Gibraltar plate boundary. The signal we
observe is predominantly from data with bounce points on the western side of the ridge. A
map view of the azimuthal distribution is shown in Figure 2.8 and serves as an aid to
assess qualitively the geometry of wave paths to the south and north of 35°N. We
examined the possibility that this signal may be from the Caribbean anomaly, a region of
anomalously high velocity in the mantle between 600 and 1400 km depth beneath the
Caribbean originally reported by Jordan and Lynn [1974] and further confirmed by Grand
[1987]. If the first leg of the SS rays propagating to western Europe were to bottom in the
high velocity Caribbean region, the result would be early SS-S residuals. This would
produce a feature of opposite sign from that observed, so we discount it as an influence
here. Another possible explanation for the long-wavelength signal could be azimuthal
anisotropy, but the examination above of possible patterns of azimuthal anisotropy does not
support this suggestion.

Another distinctive feature of the residuals in Figure 2.7 is a row of negative

values which trends northwest to southeast along the trend of the New England Seamounts



and across the ridge to the vicinity of the Great Meteor Seamount. This feature comes from
event-station pairs at a number of different azimuths and distances so cannot be attributed to
a source or receiver effect. We do not observe distinctive anomalies in the vicinity of the
Bermuda, Azores or Canary Islands hotspots. The data density is poor for the Bermuda
region, however, and any signal associated with the Canary Islands may be obscured by
the ocean-continent transition. Recently active hotspot islands might be expected to display
strong positive (late) residuals, such as Stewart and Keen [1978] observed for PP-P
residuals at the Fogo Seamounts. In contrast, Woodward and Masters [1991] found
mostly negative (early) SS-S residuals in the vicinity of the Hawaiin hotspot, and Jordan
[1979] and Sipkin and Jordan [1980b] have suggested that the net effect of hotspots may
be to produce early arrivals because of the presence of high velocities in a depleted mantle
residuum.

There is a systematic variation of SS-S residual with latitude, i.c., effectively along
the direction of the Mid-Atlantic Ridge axis. Age-corrected SS-$S residuals with SS bounce
points on lithosphere younger than 100 My are shown versus latitude in Figure 2.9. The
along-axis variations show a variety of scales, notably at wavelengths of about 1000 - 2000
km in the region from 15° to 35°N, and at about 6000 km wavelength from late (positive
residuals) in the south (20-35°) to early (negative residuals) farther north (45-55°N). The
largest of these variations are robust with respect to sclective removal of portions of the
data. The Iceland region appears as a local maximum (positive §S-S delay) on the profile,

but the Azores hot spot does not have a distinct seismic signal.

JOINT INVERSION OF TRAVEL TIME RESIDUALS AND GEOID AND DEPTH ANOMALIES

Long-wavelength variations in shear wave velocity of the sort depicted in Figure

2.9 presumably are a consequence of some combination of variations in temperature and
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composition of the upper mantle. Such lateral variations should also have signatures in
other physical quantities measurable at these wavelengths, notably gravity (or geoid height)
and topography (or residual bathymetry), because of the dependence of these quantities on
bulk density. Travel time residuals, geoid anomalies, and residual depth anomalies are
independent quantities dependent in different ways on temperature, bulk composition, and
their variation with depth. We therefore seek a quantitative procedure for treating travel
time residuals jointly with geoid and bathymetry data and in particular for a combined
inversion of all three quantities for horizontal variations in upper mantle temperature and
composition.

To ensure complementarity of data sets, bathymetry and geoid height values are
obtained at each SS bounce point, and both are corrected for subsidence with seafloor age
by means of the plate cooling model [Parsons and Sclater, 1977; Parsons and Richter,
1980]. In this manner we effectively normalize all observations to zero age. Bathymetric
data are obtained from the corrected Digital Bathymetric Data Base (5’ grid) [U.S. Naval
Oceanographic Office, 1985). Geoid data are taken from a combined set of Seasat and
GEOS3 altimeter data [Marsh et al., 1986]. Data north of 70° N were not included in the
Marsh et al. .[1986] data set due to the high probability of being over sea ice, so our
analysis below is confined to latitudes less than 70°N. We find that the correlation of SS-S
residuals with the low order geoid is negative, but that at high order the correlation is
positive (Figure 2.10). This relationship may indicate a depth dependence of contributions
to geoid and travel time (e.g., the long wavelength signal may be a lower mantle effect).
Low degree harmonics are likely linked to deep-seated density heterogeneities and
subducting slabs [Hager, 1984; Hager et al., 1985). Since we are interested in upper
mantle processes, we filter out the long-wavelength component of the geoid by subtracting
a reference field [Lerch et al., 1979] expanded in spherical harmonics to degree and order 7
and tapered to degree and order 11. To provide a comparable bathymetric data set,
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bathymetry is high-pass filtered (corner at 4000 km, cutoff at 6000 km) to remove long-
wavelength trends. Along-axis profiles are constructed from the age-corrected and filtered
geoid and bathymetry data.

Profiles of age-corrected travel time residuals, geoid, and bathymetry are compared
in Figure 2.11. While qualitative correlations among profiles are apparent, we seek to
quantify possible models of temperature and compositional variations that can match these
observations. Oceanic bathymetry and geoid height are both sensitive to variations in
mantle density at depth. Such variations can be either thermal or compositional in origin
and, like seismic velocity, are presumably related to mantle convection and differentiation.
For a given density change, the seismic signature of thermal and compositional
heterogeneity are of opposite sign, so travel time residuals constitute key information for

distinguishing between mechanisms of heterogeneity.

Inversion for Thermal Structure

We seek to formulate an inversion for the distribution of temperature anomalies
T(x,z) (where x is along-axis and z is depth) that can produce the along-axis geoid,
bathymetry, and travel-time anomalies shown in Figure 2.11. Topography and geoid
kernels were calculated for prescribed models of viscosity for an incompressible
Newtonian mantle with free slip at the surface and the core-mantle boundary. The
convecting region is assumed to be overlain by a high-viscosity layer 40 km thick. We
performed calculations both for a mantle of constant viscosity and for a mantle with a
shallow low-viscosity layer. Topography and geoid anomalies depend on the viscosity
structure, but the predicted travel times do not. Kemels were calculated using a method
similar to that of Richards and Hager [1984] except that the solution was directly integrated
across the layers instead of being obtained via propagator matrices (McNutt and Judge,
1990]).
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The inversion is best conducted in the horizontal wavenumber domain. The
thermal anomalies AT(k,z) at depth are related to the predicted dynamic topography h(k) for
wavenumber k via an integral of the form

Zomn
Ah ) = P& I H (k,z) AT (k.z) dz (2.3)
PO-Pw Zein

[(Parsons and Daly, 1983] where a is the volumetric coefficient of thermal expansion, pg
and pw are the densities of the mantle and of water at standard temperature and pressure,
and zmin and zmax are the upper and lower boundaries of the layer in which temperatures
are allowed to vary. Table 2.2 contains a summary of the constants adopted here. The
depth and wavenumber-dependent topography kernel H(k,z) is calculated from the
equations of continuity and motion given a set of boundary conditions, a viscosity model,
and a constitutive relation between stress and strain [Parsons and Daly, 1983). Similarly,

the kernel G(k,z) for the geoid relates the thermal anomalies to the geoid N(k) via

Zrax
2xlp
AN(k) = —-é{-"— j' G(k,z) AT(k,z) dz (2.4)

[Parsons and Daly, 1983] where I is the gravitational constant, and g is the surface
gravitational acceleration.

Sample geoid and topography kernels calculated for different wavenumbers and
viscosity structures are shown in Figures 2.12 and 2.13. Cartesian kernels are used
throughout this study because of their computational efficiency and straightforward
application to Fourier transform techniques. We have compared extrema of the upper
mantle portions of the geoid and topography kernels for a layered cartesian Earth and a
spherical Earth for a number of wavelengths and different viscosity structures (Figure
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2.13), and we note good agreement even at very long wavelengths (spherical harmonic
order [=6). This agreement suggests that the results presented here should be applicable
to the spherical Earth without introducing unreasonably large errors.

Temperature perturbations at depth can be converted to a seismic velocity
perturbation by assuming a value for the partial derivative of shear wave velocity with
respect to temperature, dvy/dT. The resulting two-wave travel time perturbation is given by

v 2 ATk 2)dz
= s v 2
M =25

. mvs(’)z (1 - prv@)"?

m

(2.5)

where vg(z) is from the reference shear velocity model [Dziewonski and Anderson, 1981]
and p is the ray parameter, generally taken to be a representative value for the range of
epicentral distances considered here. We use a value of -0.6 m/s K-1 for avg/@T. This
value is higher than the values of Anderson et al. [1968] and Kumazawa and Anderson
[1969] at standard temperature and pressure but is similar to the value of -0.62 nvs K-1
determined by McNust and Judge [1990] by a least squares fit of Love-wave phase
velocities to predicted temperature of the lithosphere. Such a value is consistent with the
change in P-wave velocity with temperature, dvp/dT =-0.5 ny/s K-1, found from modeling
wave propagation along subducting slabs [Creager and Jordan, 1986; F ischer et al., 1988]
if we assume that dvy/dT = 1.1 dv/dT [Woodhouse and Dziewonski, 1984]. Partial melt
would increase the value of dvy/dT [Sleep, 1974; Sato and Sacks, 1989), but simultaneous
analysis of both shear and compressional differential travel times by Woodward and
Masters [1991] indicates that significant partial melting is not required to explain the
differential travel time residuals in the north Atlantic region.

The forward problem consists of calculating geoid, topography, and travel time

residual profiles given a starting two-dimensional temperature structure T(x,z). The
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inverse problem consists of finding a temperature structure that predicts (via equations 2.3 -
2.5) geoid, topography, and travel time profiles which best fit those observed. The
familiar matrix equation d = A m is formed from discrete versions of equations 2.3 - 2.5.
The data vector d consists of the topography, geoid, and travel time residuals, the model
vector m contains the temperature variations for which we are solving, and the matrix A
contains the coefficients and kernels which relate the data to the model. As a check on our
procedure, we constructed a forward problem for geoid and topography and found good
agreement with the modelling results of McKenzie et al. [1980].

The bathymetry, geoid, and travel time profiles of Figure 2.11 are interpolated to a
constant spacing, demeaned, tapered at both ends with a 10% sine squared taper, and
Fourier transformed. Since our profile extends from 10 to 72°N, the first and last 10% of
the profile (10 - 16°N and 66 - 72°N) will be affected by the taper. The 3n x 1 data vector d
is then constructed, using the complex (to retain both amplitude and phase) bathymetry,

geoid, and travel time data sampled at n discrete wavenumbers:
d = [ Ah(ky)....,Ah(kp),AN(k}),...,AN(kp),At(k),..., At(kg) ] T (2.6)

where T denotes transpose, and n in this case is equal to 5, representing the first 5
coefficients of the Fourier series expansion (wavelengths 7104 km, 3552 km, 2368 km,
1776 km, and 1420 km). For the case where temperature perturbations are constrained to
be in a single layer, the n x 1 model vector m is given by

m = [ AT(k}),...,AT(kp)]T 2.7)

For the more general case of a multi-layer system, the nj x 1 model vector m is given by

m = [ AT(k), z1),...,.AT(ky, zj), AT(kz‘z1),...,AT(kz'Zj),AT(kn'zl)...,AT(kn,Zj)]T (2.8)
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where z; is the layer index and j is the total number of layers. In this paper we perform
inversions for single-layer models only. The “layers” of temperature variations are
independent of the “layering” system of lid, low viscosity zone, and mantle which we use
for the calculation of kernels, although major changes in viscosity would tend to segment
AT as well. The temperature layering simply refers to that region bounded by zmin and
Zmax in the integrals of equations 2.1 - 2.3.

The 3n x n matrix A contains the coefficients and kernels that relate the temperature
perturbations to the observations, which for the single-layer case is given by
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The matrix A contains both bathymetry and topography kernels and is thus viscosity
dependent; i.e., a viscosity structure must be assumed. We solve the equation d = A m by
least squares
m=(AR,A) AR, d
(2.10)
where A is the complex conjugate transpose of the matrix A. Construction of the data
covariance matrix Rdq is discussed in Appendix 2.B. Equation (2.10) is solved for the

solution vector m, and variance reduction is calculated via

_(d-Am) Ryy (d-Am)
dRyd (2.11)

variance reduction = 1

The resulting model vector m is inverse Fourier transformed back to the spatial domain to
produce an along-axis temperature profile. The solution m is also substituted into
equations 2.3 - 2.5 to compare predicted geoid, bathymetry, and travel time residuals with
those observed.

Six'inversion experiments for temperature structure were performed (Tables 2.3
and 2.4). Table 2.4 contains spectral coefficients for both the observed data and the
predicted models, and serves as a guide to how well the various spectral components of the
data are being fit. Since the geoid and bathymetry kemnels do not include any phase
information (except that a sign change produces a 180° phase shift), large phase differences
between components of the observed geoid and bathymetry would indicate that these
components cannot simultaneously be well fit by our models. Inversions were carried out
for two different viscosity models and for three different thicknesses of the layer in which
lateral temperature variations were assumed to occur. Because topography and geoid

anomalies depend only on the ratios of viscosity in different layers [Richards and Hager,
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1984; Robinson et al., 1987; Hong et al., 1990], we set the dimensionless viscosity of the
layer representing the bulk of the mantle to unity. In one viscosity model, termed the
“constant viscosity mantle,” a 40-km-thick high-viscosity lid overlies a unit viscosity
mantle. We set the viscosity in the lid to 104, which effectively mimics rigid behavior. In
a second model, a 160-km-thick low-viscosity zone is present beneath a 40-km-thick lid;
the viscosity in the low-viscosity zone is a factor of 100 less than in the underlying mantle.
The thickness of the layer of temperature perturbations was taken variously to extend from
0-150 km depth, 0-300 km depth, and 0-650 km depth. The matrix A is different for each
of these cases, as it involves viscosity-dependent geoid and topography kernels and also a
summation over depth.

Inversion results for the constant-viscosity-mantle cases are shown in Figure 2.14.
The “observed” profile is actually a filtered version of the observations, containing only the
wavelengths used in the inversion (1400 to 7100 km). Predicted profiles were calculated
from equation 2.5. For these solutions, the long-wavelength fit to geoid is better than at
short wavelengths. The fit to bathymetry is poor. The predicted magnitude of the SS-S
residuals range from a factor of S too small for the 650-km-thick layer to a factor of about
1.5 too smail for the 150-km-thick layer. Increasing the temperature variations to improve
the fit to the SS-S residuals leads to predicted geoid variations that are too large. The
highest total variance reduction and best fit for the constant-viscosity cases come when
lateral variations are constrained to shallow (0-150 km) depth. The variance reduction is
25% for bathymetry, 79% for geoid, and 58% for travel times (T able 2.3). The total
variance reduction is 53%. The variation in temperature is 180 K for the 150-km-thick
layer, and only 60 K for the 300-km-thick layer.

Figure 2.15 shows inversion results for the models with a thin low-viscosity zone.
A good fit to both geoid and travel time is found, although the alignment in phase of
predicted and observed geoid is not as good as for the constant-viscosity case. The fitto
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bathymetry is again poor. The total variance reduction for the 150-km-thick and 300-km-
thick layers are both 57%, although the shallow model provides slightly higher variance
reduction for bathymetry (27% for 0-150 km deep layer, 24% for 0-300 km deep layer)
and the 300-km-thick-layer model provides higher variance reduction for geoid (79% for 0-
150 km deep layer, 85% for 0-300 km deep layer). The variation in temperature for the
150-km-thick layer is 230 K and in the 300-km-thick layer is 110 K.

We have explored the hypothesis that the lack of correlation of predicted and
observed topography is an indication that the source of variations in the geoid and travel
time anomalies is deep. To test this hypothesis, we performed inversions with temperature
variations restricted to deeper layers and found that fits to topography were still poor. It is
possible that the bathymetric signal is dominated by crustal thickness variations which are
not included in our calculation of dynamic topography. An assessment of such thickness

variations is discussed further in Appendix 2.B.

Inversion for Compositional Variations

A possible alternative to along-axis variation in mantle temperature is lateral
variation in bulk mantle composition, due perhaps to a variable extent of melt extraction or
different degrees of mixing of compositionally distinct volumes of mantle material. The
dynamical effects of compositionally induced density variations can be large (O’ Hara,
1975; Boyd and McCallister, 1976; Oxburgh and Parmentier, 1977, Sotin and Parmentier,
1989]. The fraction of mantle potentially extractable as basaltic melt is thought to be 15-
25% [e.g., Green and Liebermann, 1976]. Thus, for every volume of basalt removed
from the mantle, a volume of residuum several times larger is left behind. The effect of
basalt depletion is to increase the molar ratio Mg/(Mg + Fe) (or Mg#) in the residuum,
which reduces the density and increases the seismic velocities [¢.g., Liebermann, 1970,

Akimoto, 1972]. For example, subtraction of 20 mole % olivine basalt from pyrolite can



35

decrease the density of the residuum by nearly 2%, equivalent to a thermal perturbation of
nearly 500 K [Jordan, 1979). Thus compositional changes need only be slight to produce
effects on the order of 100 K, comparable to values obtained from the inversions for
temperature variations. In this section we explore the effects of compositional variations
parameterized in terms of the variation in the Mg# in the upper mantle along the ridge. Our
motivation for parameterizing compositional variations simply in terms of Mg# is that
differences in this quantity yield significant variations in seismic velocity and density, in
contrast to most other measures of degree of melt extraction.

Partial derivatives of density and seismic velocity with respect to Mg# are obtained
from Akimoto [1972). These values were measured on a suite of samples ranging from
pure forsterite (Mg2SiOs) to pure fayalite (Fe;Si04). While these partial derivatives are at
standard temperature and pressure, it is expected that a change to elevated temperature and
pressure will have only a second order effect, since temperature and pressure corrections
work in opposite directions [Jordan, 1979). Above the solidus temperature, however, the
amount and distribution of partial melt, which may depend strongly on composition and
particularly volatile content, is important. The presence of melt is likely to have a larger
effect on SM wave velocities than on bulk density. Calculations of melt migration,
however, suggest that once created, melt segregates rapidly by a percolation mechanism
[e.g. Scott and Stevenson, 1989], so that the melt fraction present in the mantle at any
given time is probably small. Studies of mantle peridotites [Johnson et al., 1990] also
support the importance of fractional melting.

It is straightforward to convert equations (2.3) and (2.4) to relations between geoid

or topography and a compositionally induced density perturbation by means of the relation

Ap=-poa AT (2.12)

Compositional anomalies at depth yield a dynamic topography h(k) given by
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zmu

1
ah = 5L aM IH(k.Z) AMg(k2) dz (2.13)

mm
where AMg represents the fractional change in the Mg#. Compositional anomalies yield a

geoid anomaly

ango = 22T 6 ah': jG(k,z> AMg(k,2) dz (2.14)

For a compositional perturbation at depth the resulting two-wave travel time perturbation is
given by

Zmax
av! AMg(k9z) dZ

Atk)=2
MgJ y (2?1 -piv @)

(2.15)

Using equations (2.13) - (2.15), an inversion scheme similar to that used for
thermal perturbations is formed. The solution vector now has the form

m = [AMg(k}), ..., AMg(kn)IT (2.16)

The data vector remains the same as in equation (2.6), while the matrix of coefficients, A,
changes to reflect the relation between the data and mantle composition, rather than
temperature, as outlined in equations (2.13) - (2.15).

The results of the inversions for compositional variations are summarized in Table

2.3 and in Figures 2.16 and 2.17. We are unable to match simultaneously both SS-S travel
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time residuals and geoid and bathymetric anomalies with solely mantle compositional
variations for either a constant viscosity mantle or one with a low viscosity zone. This is
not surprising, as the travel times are for the most part positively correlated with geoid and
bathymetry, but compositional variations (at least for the Mg2SiOy4 - FeSiO4 system
examined here) have an opposite effect on travel time and geoid-bathymerry.

For the constant viscosity case, the fit to the geoid is excellent, and the fit to
bathymetry is slightly better than in the inversion for temperature. The fit to SS-S residuals
is so poor that the variance reduction is negative for travel time. Large compositional
changes would be required to affect travel times, whereas only small compositional
changes are needed to produce significant density contrasts to match the geoid signal. The
total variance reduction for the constant viscosity case does not vary greatly (from 32-33%)
for compositional changes constrained to be over different depth intervals, though the
variance reductions for individual data sets (bathymetry, geoid, travel time) vary
significantly from model to model (see Table 2.3). The range in Mg# is about 1% if the
variation is constrained to the depth range 0-150 km and only 0.1% for the 0-650 km depth
range.

Figure 2.17 shows inversion results for the model with a low viscosity zone. A
good fit to both geoid and bathymetry is found, although the alignment of predicted and
observed geoid is not as good as in the constant viscosity case. The fit to bathymetry is the
best of any models so far. The total variance reduction is still low (43 10 49%), due to the
poor fit to travel times (negative variance reduction in all cases except the 0-650 km model).
The range in Mg# is 2.4% if constrained to 0-150 km depth, 1.3% over 0-300 km depth,
and 0.5% over 0-650 km depth.

Joint Inversion for Temperature and Composition
We next explore whether a combination of temperature and compositional
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variations can provide a good match to the observed geoid, travel time, and bathymetry.
Joint inversions provide improved fits to all data at the expense of introducing additional
free parameters. For these inversions the data vector remains the same as in equation (2.6),
the solution vector is modified to include both temperature and composition, and the matrix
of coefficients, A, includes the effects of both temperature and composition. The matrix-
building equations become, for example, for topography,

Zm
P J’ uH(k 2) AT(k2)dz + —L— 90 J' H(k,z) AMg(k,z)dz (217
Po=Pw, ’ ’ Po—Pw Mg, ’ ' (2.17)

mmn mn

Ah(k) =

which is simply a combination of equations (2.3) and (2.13). The new geoid equation
comes from a combination of equations (2.4) and (2.14) and the travel time equation from a
combination of equations (2.5) and (2.15). Cross terms, such as compositional changes
induced by increases or decreases in temperature, are neglected.

The results for the joint inversion for temperature and composition are summarized
in Table 2.3 and Figures 2.17 and 2.18. The travel time residuals are well-modeled in all
cases, as are the geoid data. The topography is best fit for the case with a low viscosity
zone. Resolution of the depth interval of the most important lateral variations is rather
poor. The topography is fit marginally better for the case where temperature and
compositional anomalies are constrained to be shallower than 300 km. For the constant
viscosity mantle, the temperature variations range from 210 K, if constrained to 0-150 km
depth, to 55 K if over 0-650 km depth; variations in Mg# range from 1.5% if over 0-150
km depth to 0.4% for 0-650 km depth. For the case with an upper mantle low viscosity
zone, the temperature variations are similar to those in the constant viscosity case, but the
variations in Mg# are larger, from over 2% for 0-150 km depth to nearly 1% for 0-650 km
depth.

The travel time residuals are perfectly fit in the joint inversions for temperature and
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composition (Table 2.3). This occurs because of the way the model parameters actin a
similar manner on both geoid and bathymetry, producing a singular matrix if only geoid
and bathymetry data are inverted for both temperature and composition. Undamped least
squares always provides perfect solutions when the number of equations is equal to the
number of unknowns unless the matrix to be inverted is singular. If we perform an
inversion including only travel time and geoid data, we have the same number of equations
as unknowns, the matrix is nonsingular, and we obtain perfect fits to both travel time and
geoid. Similarly, if we perform an inversion of travel time and bathymetry data, we again
obtain perfect fits to both data sets. If we perform an inversion of geoid and bathymetry
data, however, we are unable to obtain solutions without applying damping. In the joint
inversion of travel time, geoid, and bathymetry, we have more equations than unknowns
and the inversion is overdetermined. However, the travel times are perfectly determined in
this case because of the nonuniqueness inherent with geoid and bathymetry. We have
performed undamped inversions with various weightings on the geoid, bathymetry, and
travel time data, and in all cases the travel times remain perfectly fit.

We have also performed joint inversion for temperature and composition with Mg#
variations constrained to be in the upper 50 km of the lithosphere so as to mimic
compositional variations due solely to variable melt extraction at the ridge. Temperature
perturbations were allowed to remain within the depth ranges adopted earlier. The results
for this inversion are summarized in Table 2.3 and Figures 2.20 and 2.21. The variance
reduction was similar for the constant viscosity case and for the model with a low viscosity
zone. In general, the geoid is fit very well, the predicted amplitudes are a bit low for travel
time residuals, and the topography fit is slightly out of phase. For the constant viscosity
mantle, the range in temperature is 210 K over 0-150 km depth and 25 K over 0-650 km,
while Mg# variations constrained to be confined to 0-50 km depth were over 5%. For the

case with a low viscosity zone, the temperature variations were not dramatically different



from those in the constant viscosity case, and variations in Mg# were about 4.5%. The
inversion solution shows high temperatures near 30°N and low temperatures in the region
from 50-60°N. Iceland also appears to be underlain by high-temperature mantle. Going
from south to north along the ridge, compositional variations indicate low Mg# in the
vicinity of 20-30°N, high Mg# in the Azores region (40°N), low values near 50°N, and
high values near 60°N.

DISCUSSION

The temperature and compoSitional variations in Figures 2.14-2.21 are broadly
consistent with observed travel time, geoid, and bathymetry anomalies in the north Atlantic
region. Temperature variations alone can account for most of the observed anomalies. In
contrast, compositional variations alone cannot match all anomalies simultaneously. We
infer that a component of the observed anomalies is due to long-wavelength variations in
upper mantle temperature. Joint inversions for temperature and composition provide better
fits than single-variable models, but at the expense of introducing additional free
parameters.

It is difficult to select a ‘best’ model from the suite of inversions presented. The
variance reductions in Table 2.3 serve as a guide, but independent criteria may allow us to
reject some of the models, even those with high variance reductions. In particular, those
models with large temperature variations (well in excess of 100 K) can be seriously
questioned. Lateral temperature variations at upper mantle levels beneath oceanic ridges are
thought to be no more than about 300 K globally [Klein and Langmuir, 1987, so a
variation in temperature of 230 K (as in the inversion with a low-viscosity zone and a 150-
km-thick layer of temperature perturbations) solely within a section of the north Atlantic is
probably unreasonably large. Further, as White and McKenzie [1989] have noted,
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relatively small increases in mantle temperature above values typical for the mid-ocean ridge
are sufficient to cause large increases in melt production. Their models indicate that, for
fixed bulk composition, an increase of 100 K above normal doubles the amount of melt
while a 200 K increase can quadruple it. Such increased melt production should lead to
approximately corresponding increases in crustal thickness. Variations in oceanic crustal
thickness away from fracture zones, however, are generally thought to be small, with
thicknesses typically 6-7 km and ranging from 4.5 to 8.5 km (Spudich and Orcust, 1980;
White, 1984; Purdy and Detrick, 1986). In the joint inversion for temperature and
composition, temperature variations if confined to 150 km depth are excessive (over 200
K) and if the variations extend over 0-650 km the fit to topography is poor, especially for
the constant-viscosity mantle. On the basis of these results we prefer the models with
temperature variations occurring over 0-300 km depth. For the constant viscosity mantle,
the temperature variation is 110 K, and the variation in Mg# is 0.75%. For the case with
an upper mantle low viscosity zone, the predicted temperature variation is 125 K, and the
variation in Mg# is 1.1 %. The total variance reduction is greater in the model with a low
viscosity zone.

Even a temperature variation of about 100 K is high for a mantle of constant
composition, since we do not observe increased crustal thickness in regions that our
models indicate have high temperatures. The assumption of approximately constant upper
mantle composition warrants discussion. In particular, lateral variation in trace amounts of
mantle volatiles may have a large effect on seismic velocity at a given temperature. The
presence of even a slight amount of water, for instance, is sufficient to cause a significant
decrease in the initial melting temperature of peridotite [Wyllie, 1971). Estimates of volatile
contents and their lateral variations in the north Atlantic region have been made from
measurements of abundances of halogens, SiO2, K20, and H2O in basalts and from the
volumes of vesicles in basalts [Schilling et al., 1980, 1983; Schilling, 1986; Michael,
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1988). These studies indicate that Cl, Br, F, and H20 contents increase toward the Azores
and Iceland and that H7O is two to three times more abundant in Mid-Atlantic Ridge basalts
erupted over the Azores platform than at adjacent normal ridge segments. The effect of
volatiles on density and shear wave velocity will be slight at subsolidus temperatures but
can be major over the melting interval [Goerze, 1977]. The presence of melt will act to
decrease significantly the seismic velocity [Duschenes and Solomon, 1977] and, to a lesser
extent, lower the density of the mantle. To the extent that seismic velocity depends on
proximity of the temperature to the solidus temperature [Sato et al., 1988, 1989}, volatile
content can trade off with temperature in its effect on velocity at subsolidus conditions.
Thus, variation in volatile content could lessen the variations in melt production implied by
the inversion solutions.

Even without significant variations in volatile content, it is clearly an
oversimplification to parameterize mantle composition in terms of only a single quantity.
Further we have assumed that the partial derivatives of bulk density and seismic velocity
with respect to Mg# that are those for olivine [Akimoto, 1972]. The work of Jordan
[1979] indicates that these derivatives remain nearly constant for many different mantle
compositions (i.e., pyrolite-type compositions with various amounts of olivine,
orthopyroxene, clinopyroxene, spinel, and garet), so the latter assumption is sound.
However, at any given Mg#, orthopyroxene and clinopyroxene have lower velocities and
are less dense than olivine, while gamet and spinel are seismically faster and denser than
olivine [Jordan, 1979], so an increase in the weight percent of orthopyroxene and
clinopyroxene or a decrease in the weight percent of gamnet and spinel with respect to
olivine in the mantle could counteract some of the temperature variations obtained under the
assumption of effectively uniform mineralogy. Several studies [Wood, 1979; Jaques and
Green, 1980; Dick et al., 1984] have suggested that compositional variations in the mantle

are plausible. Indeed a number of workers [e.g., Davies, 1984; Allégre et al., 1984] favor



43

dynamic models for the mantle in which dispersed heterogeneities of various sizes and
shapes are passively embedded in a continually mixed, convecting mantle. Variations in
modal fractions of olivine, orthopyroxene, and clinopyroxene in peridotites recovered
along the Mid-Adantic Ridge have been reported in several studies [Dick et al., 1984,
Michael and Bonatti, 1985)]. These variations are typically attributed to different degrees of
melt extraction but could also be partially due to intrinsic upper mantle heterogeneity. For
example, the relative fractions of olivine, clinopyroxene, and orthopyroxene indicated by
Michael and Bonarti [1985] at 26°N and 30°N, if extended to depth, could counteract a
portion of the temperature differences indicated by the inversion solutions for these
regions.

Chemical analysis of dredged peridotites in the north Atlantic indicate a range of
about 2.5% variation in Mg# [Michael and Bonatti, 1985). This value is intermediate
between what we find for models with compositional variations constrained to be shallow
(4.5 to 6% variation) and those models with compositional variations in the same depth
ranges as the thermal variations (1-2%). This suggests that compositional variations may
be concentrated slightly shallower than the temperature variations. Michael and Bonatti
[1985] present an along-axis profile of Mg# variations from dredged peridotites which can
be compared with our calculated profile. The main feature in their profile is a zone of high
values of Mg# in the Azores region, from 34-45°N, relative to the rest of the ridge,
consistent with our modelling results. Their data sampling is too sparse to delineate other
long-wavelength features. Their average value for 26°N also has a high Mg# relative to
adjacent data. This is consistent with our observation of early SS-S travel times and low
geoid in this region. This anomaly is of too short a wavelength (< 1000 km), however, to
resolve in our inversions. We should note that comparisons merit caution, as small scale
features, such as those due to ridge segmentation, can produce large differences in

composition between peridotites over scales of tens of kilometers. In addition, dredged



peridotites are mostly from fracture zone environments, which may not be representative of
typical ridge mantle [Dick, 1989].

On the SS-S residual profile the Iceland region appears as a local maximum (late
SS) but the Azores hotspot does not show a distinct seismic signal. The inversion results
for these two regions are also markedly different. The results of the joint inversion for
temperature and composition predict a high Mg# in the Azores region while indicated
temperatures are not anomalously high. At Iceland, in contrast, high temperatures
dominate. Work by Schilling (1986} and Bonatti [1990] outlines the differences in
geochemical signatures between the Azores and Iceland hot spots. These workers suggest
that Iceland is a "traditional" plume hot spot, with a predominantly thermal origin, but that
the Azores might be more aptly named a “wet spot” because of the presence of excess
hydrous phases and the lack of a thermal anomaly. Bonatti [1990] suggests that because
the Azores hotspot is rich in volatiles, enhanced melt production could occur with little or
no increase in temperature. The high Mg# indicated in our inversions allows the region to
be seismically fast (as we observe) but of low density (as geoid and bathymetry require).
The results are consistent with the hypothesis that the Azores hot spot is not associated with
a plume-like thermal anomaly. Inversion of surface wave dispersion data can potentially
provide further tests of these ideas, but studies to date have yielded apparently conflicting
results. Results of several such investigations [Nakanishi and Anderson, 1984, Tanimoto,
1990; Zhang and Tanimoto, 1990a] suggest that the Azores region is seismically slow at
depths less than 300 km but a study utilizing 50-200-s-period Rayleigh waves by Mocquet
et al. [1989] does not. These differences may be partially attributable to the differences in
wave periods employed and mode of analysis from study to study. It may be possible that
what appear to be low velocities at the Azores are a result of horizontal smoothing of the
low velocities along the ridge and have little to do with the actual structure in the Azores

region. None of these long-period surface wave studies resolve a distinctive anomaly at



Iceland. Clearly, more work is needed to resolve the upper mantle velocity structure of hot
spot regions.

Bonatti [1990] has constructed profiles of the equilibrium temperature of dredged
peridotites along the Mid-Atlantic Ridge axis from 0 to 60°N by means of two different
geothermometers [Wells, 1977; Lindsley, 1983]. Comparison of these profiles with the
along-axis temperature variations obtained from our inversions reveals a number of
qualitative correlations as well as a few discrepancies. The range of temperature variations
in the profile based on the Lindsley [1983] geothermometer is about 150 K, neglecting high
values termed “anomalous.” When the high values are included the range increases to 400
K. The profile utilizing the Wells (1977] geothermometer has a range of 100 K neglecting
the anomalous values and 350 K including them. The highest temperatures in our
inversions are near 30°N (Figures 2.18-2.19), a region showing a slight peak in Bonatti’s
temperature profile estimated according to Lindsley [1983] and a very weak rise in the
profile utilizing the Wells [1977] geothermometer. There is a small dip in temperature at
26°N (a region which we find to be seismically fast) in the Lindsley [1983] and Wells
[1977) profiles, but the difference may not be significant considering the error bars.
Bergman and Solomon [1989] also found the upper mantle near 26°N to be seismically fast
from an analysis of teleseismic P-wave travel time residuals from carthquakes in this region
recorded by a local ocean-bottom seismic network. The lowest temperatures on the profiles
of Bonatti [1990] are at 43°N. Temperatures from our inversion solutions are also low in
this region, although the Bonarti [1990] profiles indicate an increase in temperature
proceeding north from 43°N to 53°N, whereas our results favor continued low
temperatures. Part of the difference between our results and the geochemical studies may
be attributed to the fact that the depth sampled by basalts and peridotites is likely to be
shallower than the layer thicknesses of most of our models. Assuming that the 6-km-thick
oceanic crust was formed by 9 to 22 % partial melting of the mantle [Klein and Langmuir,



1987), then the volume of residual peridotite will extend from the base of the crust to
somewhere between 30 and 70 km depth. The amount of depletion will vary with depth if
we assume a fractional melting model. Our models with compositional variations confined
to depths less than 50 km are most representative of shallow fractionation and
differentiation.

Several improvements in future studies of the type presented here may be
envisioned. Our models thus far have been limited to simply parameterized one-
dimensional variations in temperature and composition within a single layer. It is likely that
these lateral variations are not constant within a given layer and that there are two-
dimensional lateral variations independent of lithospheric aging. The techniques outlined in
this paper can be generalized to a multilayer system and to two-dimensional wavenumber
(see equation 2.8), but we do not feel that the resolution of our data can justify more
complicated models at this time. Kemels for seismic surface waves are strongly peaked in
the upper mantle, and such data would provide a useful constraint in future models. The
inclusion of surface wave data would help to distinguish between lithospheric and
asthenospheric effects and may allow for two or more independently resolved layers.
Extension of the modelling to three dimensions would permit an assessment of the degree
to which mantle anomalies beneath the ridge extend off axis. Implicit in our age-correction
is the assumption that the anomalous properties of the ridge mantle are steady state on a
time scale of 100 My. Recent seafloor surveys and theoretical studies [¢.g., Pockalny et
al., 1988; Scott and Stevenson, 1989] bring this assumption into question and suggest that
at least on short time scales (< 1 My) and at slow spreading rates (as in the Atdantic)
intermittent periods of melting and crustal formation may be separated by periods with little
or no melt production. These temporation variations are likely to be averaged out,
however, over the typical horizontal wavelength (100 km) of a long-period SS wave.

Another limitation of our models is that they depend on the assumed values of
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several physical constants. It is straightforward, however, to estimate the effect of
choosing different values. The viscosity structures we employ are also quite simple but
have been chosen to represent two models widely invoked in other studies - a constant or
nearly constant viscosity mantle [e.g., Peltier, 1989] and a mantle with a thin low viscosity
layer [e.g., Craig and McKenzie, 1986; Robinson et al., 1987]. The viscosity structure of
the Earth may be temperature and pressure dependent or vary laterally, but we have not
considered viscosity structures of this type. Nor have we modelled the effects of partial
melting which could accompany the temperature variations we predict. The effect of
retained melt on the physical properties of the mantle depends critically on the melt fraction
and geometry, characteristics presently poorly known. Sato et al. [1988, 1989] downplay
the importance of partial melt and suggest that most mantle seismic velocity anomalies can
be explained by temperature variations at subsolidus conditions. The combined analysis of
both shear and compressional differential travel times also suggest that significant partial
melting is not required to explain the travel time residuals in the north Atlantic region

[Woodward and Masters, 1991].

CONCLUSIONS

We have measured 500 SS-S differential travel times for paths in the north Atlantic
region. The SS-S travel time residual decreases linearly with square root of age, in general
agreement with the plate cooling model to an age of 80-100 My [Parsons and Sclater,
1977]. Azimuthal anisotropy is not clearly resolved, and the azimuthal patterns of our data
are not consistent with the preferred upper mantle anisotropy model of Kuo et al. [1987]
for the north Atlantic. An along-axis profile of age-corrected travel time residuals displays
significant long-wavelength variations, notably at wavelengths of 1000-2000 km. The

largest of these variations are robust with respect to selective removal of portions of the
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data.

We have formulated a joint inversion of travel time residuals and geoid and
bathymetric anomalies for lateral variation in upper mantle temperature and composition.
On the basis of variance reduction, inversion for temperature favors the presence of an
upper mantle low viscosity zone and temperature anomalies concentrated at depths less than
300 km. We are unable to match travel time residuals simultaneously with geoid and
bathymetry solely with lateral variations in bulk composition (Mg#). Joint inversions for
temperature and composition provide good fits to both travel time and and geoid regardless
of viscosity structure or layer depth and thickness, but the best fits to bathymetry come
from models with a low-viscosity zone and thermal or compositional variations confined to
shallow depth. The Mg# variations predicted in the joint inversion for temperature and
composition are comparable to those found by Michae! and Bonatti [1985] in a study of
dredged peridotites along the Mid-Atlantic Ridge and may be related to variations in melt
production along the ridge.

The preferred inversion solutions have variations in upper mantle temperature
along the Mid-Atlantic Ridge of about 100 K. For a constant bulk composition, such a
temperature variation would produce about a 7 km variation in crustal thickness [White and
McKenzie, 1989), larger than is generally observed [Spudich and Orcurt, 1980; White,
1984; Purdy and Dertrick, 1986]. Introducing compositional variations as well as
temperature variations in the inversions does not change the range of temperature
appreciably. The presence of volatiles in the mantle can have a strong effect on
temperatures required for melting, and variations in volatile content along the ridge may
reduce the large variation in melt production implied by the lateral temperature variations
indicated in our models.
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APPENDIX 2.A: ESTIMATION OF ERRORS FOR SS-S DIFFERENTIAL TRAVEL TIMES

It is important to quantify the uncertainties in the differential travel time
measurements. After cross-correlation, the “quality” of each individual SS-S measurement
is rated and a grade is assigned. The cross correlation coefficient, which describes the
degree of fit between the synthetic and real SS phases, is used as an objective aid in the
assignment of quality. However, our final assignment of quality is largely subjective and
based upon visual inspection of the "synthetic” SS, real SS, and cross correlogram, taking
into account the sharpness of the arrivals and their alignment, the clarity of the seismogram,
and the appearance of a single clear peak in the cross correlation function. An "A" quality
grade indicates an excellent fit, "B" quality indicates good phase alignment but only a fair
fit, and a "C" quality grade indicates a poor fit or some ambiguity as to phase alignment. In
addition to A, B, and C grades, there were data that were rejected due to poor signal to
noise ratio for either the S or SS phases.

Assuming that the uncertainty in an individual measurement comes froma
combination of measurement error, unmodeled lower mantle structure, and epicentral error,

we write, for example, for the measurement variance of an "A" quality datum:
O'Az = O'Am2 + ()']m2 + ocpiz (Z.Al)

where G, is the total uncertainty, G, is the measurement error, Oy, is the uncertainty due
to unmodeled lower mantle structure, and Gy is the epicentral error. We assume that Oy,
and Gep; are the same for A, B, and C quality measurements, but the measurement error is

obviously a strong function of data quality.
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Effect of Epicentral Error

In general, epicentral errors affect the travel times only slightly. The events used
in this study were well recorded by a large number of stations over a wide range of
azimuths, and typical epicentral mislocations are probably less than 10 km (which would
yield a differential travel-time error of 0.35 s at 75° distance). The travel times are even
less sensitive to errors in focal depth; an error in depth of 25 km contributes only about 0.3
s to the SS-S residual. Using the rule of thumb that one standard deviation is about one half

of the estimated extremes, we adopt Gep = 0.75 s as a conservative estimate of epicentral

€ITor.

Effect of Unmodelled Lower Mantle Heterogeneity

We estimate the likely magnitude of lateral variations in the shear wave velocity of
the lower mantle from models of lower mantle heterogeneity in P wave velocity (such as
model L02.56 of Dziewonski [1984]). The average variation in travel times of direct P
waves bottoming in the lower mantle is in the range + 0.5 s. Global tomographic studies
by Dziewonski and Woodhouse [1987] indicate that the scaling ratio (3V¢/Vg) /(8V/Vp)
2 in the lower mantle. Such a scaling is also suggested by comparison of lower mantle P
wave models with the recent lower mantle S model of Tanimoto [1990]). Assuming such
an S to P velocity anomaly scaling, the resulting variation in S wave arrival time
contributed by the lower mantle would likely be about £ 1.5 s, a fraction of the observed
range in SS-S residual. While the major features of lower mantle model L02.56
[Dziewonski, 1984] and the lower mantle portions of Tanimoto’s [1990] model are for the
most part similar, enough differences exist that the application of a lower mantle
“correction” to our data might add more uncertainty than it removes. Further, absolute S-
wave travel times do not show enough variance for us to suspect large lower mantle effects

[e.g., Randall, 1971; Girardin and Poupinet, 1974; Hart and Butler, 1978; Uhrhammer,
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1978, 1979}, and the work of Gudmundson et al. {1990] indicates that most of the variance
from the ISC tables is attributable to the shallow mantle, i.c., most of the Earth’s
heterogeneity is in the upper mante and the lower mantle is fairly homogencous. On the

basis of the above information, we set Gy, = 0.5 s for our study.

Measurement Error

As an objective means to obtain error estimates, we examine the scatter in A, B,
and C quality picks in a small region. We measured the root mean square (rms) difference
between travel time residuals of the same grade (A, B, or C) with bounce points separated
by less than 80 km and with differenées in path azimuth at the bounce point of less than
10°. An 80-km distance is less than the horizontal wavelength of SS (which is about 180
km at 25 s period) so we do not expect much contribution to the rms difference from actual
lateral variations in structure. The rms difference for the 16 A quality residual pairs which
were within 80 km of each other was 1.15 s. For B quality picks, an rms difference of
2.08 s was measured using 20 residual pairs, and for C quality picks 44 residual pairs
yielded an rms difference of 2.96 s.

We'imerpret these estimates of the rms diffences as representing the average
overall errors in the A, B, and C grade measurements. (Unmodelled lower mantle structure
should be nearly identical for data with bounce points within 80 km and at similar

azimuths). Under this interpretation we can write, for A-quality residuals,
GArms® = OAmZ + Oepi’ (2.A2)
Substituting values of GA rms and Oep; into (A2) yields GAm= 0.87 s. Similarly, for B and

C quality measurements, we find Ogy = 1.94 s and Oy = 2.86 5. From (Al), the total

uncertainty for A, B, and C quality is, respectively, 65 = 1.25 s, 0g =2.14 s, and 6c =
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3.00 s.
In the weighted regression experiments the A, B, and C quality measurements are

weighted inversely by their measurement variance.



APPENDIX 2.B: ERRORS IN THE ALONG-AXIS PROFILES AND CONSTRUCTION OF THE

DATA COVARIANCE MATRIX

Errors in Bathymetry, Geoid, and Travel Time Profiles

Uncertainties in the along-axis profiles of geoid, bathymetry, and travel times are
important information in the inversion. The gridded bathymetric data [U.S. Naval
Oceanographic Office, 1985] include corrections for the deviation of water column acoustic
velocity from the assumed value of 1500 m s'1. The geoid data, provided in the form of a
0.25° x 0.25° grid [Marsh et al., 1986}, include corrections for orbit errors, instrument and
atmospheric propagation effects, and solid Earth and ocean tides.

We have averaged the bathymetry and geoid height values within a 1° x 1° box
centered at each SS bounce point. The averaging yields a representative value for a region
over approximately one horizontal wavelength of the SS wave and acts to smooth out
short-wavelength variations. Both bathymetry and geoid are corrected for subsidence with
seafloor age, using the plate cooling model [Parsons and Sclater, 1977; Parsons and
Richer, 1980]. Error introduced into depth and geoid anomalies by isochron mislocation
is difficult to estimate precisely, but for an error in age of 2 My, depth and geoid errors at
80 My would be about 30 m and 0.2 m, respectively, while at 2 My, an error in age of 2
My would have a much larger affect, giving depth and geoid errors of 350 m and 0.3 m.
The magnitude of this error highlights the importance of accurate age determination,
especially at young ages.

The presence of oceanic sediments is another source of error. In the Atlantic
Ocean, the sediment thickness increases regularly from less than 100 m along the Mid-
Atlantic Ridge toward continental margins where it can exceed 1 km [Ewing et al, 1973,
Tucholke, 1986]. A 1-km sediment thickness leads to corrections to residual depth and
geoid of about 500 m and 0.3 m, respectively (Cazenave et al., 1988; Sheehan and

53
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McNurt, 1989]. On Atlantic lithosphere of 100 My age or less the sediment thickness is
less than 500 m in most areas. Hence, neglecting the sediment loading correction should
not be crucial in this region.

The along-axis profile of SS-S residual is a weighted moving average of 10
adjacent data points grouped by latitude, using the weights discussed in Appendix 2.A.

The same weights and moving average are applied to geoid and bathymetry values at a
given SS bounce point, even though bathymetry and geoid data are presumed to be of equal
quality, in order that these profiles will be consistent with the SS-S residuals. The standard
error of the mean values for SS-S residual ranges from 0.2 s to 1.6 5. For bathymetry the
range of standard deviations from the mean value is from 24 to 370 m, and for geoid, 0.08
to 1.0 m. The largest variances in the bathymetry and geoid data come from the Iceland
region (north of 60°N), and may be due to the more complicated tectonics of this region
[White, 1988].

Before Fourier transforming, the along-axis profiles must be interpolated to a
constant spacing. We use a simple linear interpolation scheme to estimate values ata 0.5°
spacing. We estimate that the typical error in the interpolated data is comparable to that in
the along-axis moving averages, which for bathymetry is on the order of 125 m, for geoid

0.4 m, and for travel time 1 s.

Effect of Crustal Thickness Variations

Our poor fit to topography in the inversion experiments can be at least partially
attributed to unmodelled effects such as crustal thickness differences. Variations in oceanic
crustal thickness about the typical value of 6-7 km [Spudich and Orcun, 1980; White,
1984; Purdy and Detrick, 1986] are generally thought to be small at horizontal scales of
100 km and greater. However, the crust beneath the Azores plateau is estimated to be
between 8 and 9 km thick [Searle, 1976; Whitmarsh et al., 1982] and that beneath Iceland
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is at least 8 to 14 km thick [Bjornsson, 1983]. By simple isostatic mass balance, the depth

anomaly due to excess crustal thickness in the Azores region would be about 400 m, and at
Iceland, 200 m to 1.6 km. In general, simple variations in crustal thickness are insufficient
to produce a significant SS-S residual. For crustal and mantle S wave velocities of 3.5 and
4.4 kmy/s, a 2-km variation in crustal thickness would contribute less than 0.2 s to an SS-S

differential travel time corrected for differences in bathymetry. However, at Iceland, where
the crust is estimated to be as much as 14 km thick, the additional SS-S travel time could be

up t0 0.8 s.

Daia Covariance Matrix

The data covariance matrix Rdd is of the form

onk))? O 0 0 0 0 0 0 0
( 0 0 0 0 0 0 0 0
0 0 onky? O 0 0 0 0 0
0 0 0 onkp)?* O 0 0 0 0
Ry = 0 0 0 0 0 0 0 0
0 0 0 0 0 onky? O 0 0
0 0 0 0 0 0 ogkp)? O 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 oukn)?

where 0,2, OnZ, and O, 2 are the nominal variances of the bathymetry, geoid, and
travel time data, respectively. We may choose to construct the data covariance matrix not to
reflect the true variance of the data but rather to allow weighting between the different data
sets. In this way, the data covariance matrix can be altered to test the relative contributions

of different data sets to the inversion results.
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In all of our inversions, the covariance matrix is constructed to weight the three
data sets approximately equally. For example, examination of Figure 2.11 indicates that at
3000-km wavelength the amplitude of the geoid signal is approximately 4 m, bathymetry 1
km, and travel time 2 s. Thus if a value of 1 m is chosen for O, then a value of 0.5 s for

o, and 0.25 km for oy, should yield approximately equal weighting of data sets. The
corresponding 1/62 values are then 1 for geoid, 4 for travel time, and 16 for bathymetry.
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TABLE 2.1. Digital Seismograph Stations Used

Station Code Network Latitude (°N) Longitude (°E)
ALQ DWWSSN 34.942 -106.458
ANMO SRO 34.946 -106.457
ANTO SRO 39.869 32.794
BCAO SRO 4.434 18.535
BER DWWSSN 60.387 5.326
BOCO SRO 4.587 -74.043
oL DWWSSN 64.900 -147.793
GAC CAN 45.70 -75.47
GDH DWWSSN 69.250 -53.533
GRFO SRO 49.692 11.222
JAS1 DWWSSN 37.947 -120.438
KBS DWWSSN 78.917 11.924
KEV DWWSSN 69.755 27.007
KONO ASRO 59.649 9.598
LON DWWSSN 46.750 -121.810
NEO4 NARS 52.810 6.670
NEO6 NARS 50.100 4.600
NEO9 NARS 44,850 0.980
NE10 NARS 43.090 -0.700
NE!1 NARS 41.480 -1.730
NE12 NARS 40.640 -4.160
NE13 NARS 38.690 -4.090
NE14 NARS 37.190 -3.600
NE1S NARS 50.810 5.780
NE16 NARS 45.763 3.103
NE17 NARS 39.881 -4.049
RSCP RSTN 35.600 -85.569
RSNT RSTN 62.480 -114.592
RSNY RSTN 44,548 -74.530
RSON RSTN 50.859 -93.702
RSSD RSTN 44.120 -104.036
SCP DWWSSN 40.795 -77.865
SSB GEOSCOPE 45.280 4.540
TOL DWWSSN 39.881 -4.049
WM GEOSOOPE 42.610 -71.490
ZOBO ASRO -16.270 -68.125

ASRO = Abbreviated Seismic Research Observatory Network

CAN = Canadian Seismic Network

DWWSSN = Digital World-Wide Standardized Seismograph Network
GEOSCP = Geoscope Network

NARS = Network of Autonomous Recording Seismographs

RSTN = Regional Seismic Test Network

SRO = Seismic Research Observatory Network
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TABLE 2.2. Adopted Constants

Variable Description Value

a volumetric coefficient of thermal 2.5x 105Kl @
expansion

PO average mantle density 3300 kg m™3

Pw density of seawater 1000 kg m3

r gravitational constant 6.67 x 10711 N m?%kg2

g surface gravitational acceleration 9.8 ms2

ovg/oT thermal coefficient of -6.0 x 104 knys K1
shear velocity

dvg/oMg variation of shear velocity with Mg# 1.8 x 10-2 km/s/Mg# (b

dp/oMg variation of density with Mg# -12 kg/m3/Mg# ®

p average SS ray parameter at 70° 0.1375 s/km

(a) Stacey [1977], Duffy and Anderson [1989]
(b) Akimoto [1972]
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Model: Temperature variations only

Variance reduction, %

Layer Viscosity
hick AT I batl id SS-S
0-150 km cvm 180K 53 25 79 58
0-150 km vz 230K 57 27 79 66
0-300 km cvm 60 K 47 21 85 41
0-300 km lvz 110K 57 24 85 65
0-650 km cvm 20K 41 14 91 25
0-650 km lvz 33K 49 17 83 51

Model: Compositional variations only

Variance reduction, %

Layer Viscosity
hich e I batt id SS-S
0-150 km cvm 1.1 33 46 74 -9
0-150 km lvz 24 44 75 76 -9
0-300 km cvm 0.4 33 29 87 -6
0-300 km lvz 1.3 43 73 73 -7
0-650 km cvm 0.1 32 19 93 -3
0-650 km lvz 0.5 49 65 86 +5

Model: Thermal and compositional variations in same layer

Layer Viscosity AT AMg#
hici | bad id __SS-S
0-150 km cvm 210K 1.5 75 44 78 100
0-150 km vz 235K 2.1 86 75 80 100
0-300 km cvm 110K 0.7 73 28 89 100
0-300 km lvz 125K 1.1 84 74 76 100
0-650 km cvm 55K 04 71 18 94 100
0-650 km vz 60 K 0.8 85 66 88 100

Variance reduction, %

Model: Thermal inversion in layers as noted, compositional variations 0-50 km only

Layer Viscosity AT AMg# Variance reduction, %

0-150 km cvm 210K 5.5 84 83 77 91
0-150 km vz 240K 4.5 85 85 70 96
0-300 km cvm 80 K 5.9 80 84 86 72
0-300 km vz 120K 4.7 86 90 77 89
0-650 km cvm 25K 6.0 73 85 92 47
0-650 km vz 35K 4.6 75 82 73 71

cvm = constant viscosity mantle
vz = mantle with low viscosity zone



TABLE 2.4. Spectral Coefficients of Travel Time, Geoid,
and Bathymetry Data and of Inversion Solutions

Spectral Coefficients of Observations

Wavelength, Bathymetry Geoid ) SS
km phase amp phase amp phase
7104 8‘“9,% -0.61 4.39 1.70 3.53 0.99
3552 3.25 -1.59 2.15 -1.08 2.73 -1.81
2368 3.25 2.12 0.85 -2.99 1.42 -1.12
1776 1.63 0.64 0.58 0.96 1.55 -3.00
1421 0.52 -1.32 0.23 -1.70 0.84 -2.62

Spectral Coefficients of Models (from Inversion)

Inversion for temperature variations only

Constant Viscosity Mantle, 0-150 km

Wavelength, Bathymetry Geoid S5 ‘Temperature
km amp phase amp phase amp phase amp phase
7104 1.90 1.36 3.70 1.36 205 1.36 3.48 1.36
3552 1.82 -1.49 3.32 -1.49 1.98 -1.49 3.36 -1.49
2368 049 271 0.83 2.71 0.53 2.71 091 271
1776 0.30 1.68 0.48 1.68 0.33 1.68 0.56 1.68
1421 0.35 -2.13 0.54 -2.13 0.40 -2.13 0.68 -2.13
Mantle with Low Viscosity Zone, 0-150 km
Wavelength, ﬁa&ymgy Geoid ) SS Temperature
km am ase phase am hase amp phase
— 104 T&'LTT I. ail%pzf 1.32 2‘2L'P”37.5 I. 291 132
3552 2.55 -1.59 2.25 -1.59 297 -1.59 3.84 -1.59
2368 048 2.46 0.21 2.46 0.61 2.46 0.79 2.46
1776 0.39 2.44 0.14 244 0.52 2.44 0.67 2.44
1421 0.48 -2.26 0.21 -2.26 0.67 -2.26 0.86 -2.26
Constant Viscosity Mantle, 0-300 km
Wavelength, Bathymetry Geoid SS ‘Temperature
km a% phase amp phase amp phase amp phase
104 1. 1.49 441 1.49 1.31 1.49 3.54 1.49
3552 1.12 -1.41 341 -141 1.18 -1.41 3.20 -1.41
2368 0.35 2.84 094 2.84 0.38 2.84 1.03 2.84
1776 0.22 1.55 0.54 1.55 0.25 1.55 0.69 1.55
1421 0.26 -2.12 0.56 -2.12 0.31 -2.12 0.83 -2.12
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Mantle with Low Viscosity Zone, 0-300 km

Wavelength, Bathymetry Geoid 5SS "Temperature
km amp phase amp phase amprphasc phase

— 7104 1.52 1.44 421 1.44 1.62 1.44 2. 1.44
3552 2.42 -1.59 2.27 -1.59 3.02 -1.59 4.23 -1.59
2368 0.15 194 0.07 -1.20 0.23 1.94 0.33 194
1776 0.39 3.11 0.39 -0.03 0.74 3.11 1.03 3.11
1421 0.30 -2.45 0.27 0.69 0.65 -2.45 091 -2.45

Constant Viscosity Mantle, 0-650 km

Wavelength, Bathymetry Geoid . SS ‘Temperature

km phase amp phase amp phase phase
7104 0.;3 1.58 357 1.58 0.71T 1.58 a% 1.58
3552 0.65 -1.33 3.15 -1.33 0.68 -1.33 3.13 -1.33
2368 0.23 298 093 298 0.28 2.98 1.27 2.98
1776 0.16 1.59 0.53 1.59 0.21 1.59 098 1.59
1421 0.20 -2.16 0.57 -2.16 0.30 -2.16 1.39 -2.16

Mantle with Low Viscosity Zone, 0-650 km

Wavelength, Bathymeuy Geoid SS ~ Temperature

km phase amp phase amp phase amp phase
7104 0383 1356 3.57 1.56 0.85 1.56 1.85 1.56
3552 1.33 -1.46 3.39 -1.46 1.73 -1.46 3.79 -1.46
2368 0.08 -3.02 0.01 -3.02 0.15 -3.02 0.34 -3.02
1776 0.36 -3.09 0.40 0.05 0.99 -3.09 2.16 -3.09
1421 0.20 -2.54 0.27 0.61 0.70 -2.54 1.54 -2.54

Inversion for compositional variations only

Constant Viscosity Mantle, 0-150 km

Wavelength,  Bathymetry Geoid SS Composmon
km amp phase amp phase amp phase

~ 7104 1.41 1.68 274 1.68 0.31 -1.47 2. 7% { 68

3552 1.48 -1.27 2.69 -1.27 0.33 1.87 2.93 -1.27

2368 1.18 2.39 2.01 2.39 0.27 -0.75 2.36 2.39

1776 0.83 0.66 1.34 0.66 0.19 -2.48 1.69 0.66

1421 0.24 -1.19 0.37 -1.19 0.06 1.96 0.50 -1.19
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Mantle with Low Viscosity Zone, 0-150 km

Wavelength, Bathymetry Geoid 5SS Composition
km hase am hase ag? phase amp phase
7104 ;% %.37 2.3£ ;.37 0.33 -1.47 .47 1.67
3552 2.35-1.35 2.06 -1.35 0.56 1.79 2.42 -1.35
2368 3.07 2.19 1.31 2.19 0.80 -0.96 3.45 2.19
1776 1.87 0.56 0.66 0.56 0.52 -2.58 2.23 0.56
1421 0.46 -0.90 0.20 -0.90 0.13 2.24 0.57 -0.90
Constant Viscosity Mantle, 0-300 km
Wavelength, Bathymetry Geoid 5SS Temperature
km amp phase amp phase angg phase amp phase
— 7104 1.04 1.68 3.61 1.68 0.22 -1.46 315 1.68
3552 0.89 -1.22 270 -1.22 0.19 192 2.76 -1.22
2368 0.64 2.51 1.72 2.51 0.14 -0.63 2.05 2.51
1776 0.51 0.70 1.24 0.70 0.12 -2.44 1.72 0.70
1421 0.16 -1.25 0.36 -1.25 0.04 1.89 0.58 -1.25
Mantle with Low Viscosity Zone, 0-300 km
Wavelength, Bathymetry Geoid SS Composition
km phase amp phase amp phase amp phase
7104 1.20 1.68 3.33 1.68 0.26 -1.46 1.15 1.68
3552 2.25-1.34 2.10 -1.34 0.58 1.80 2.51 -1.34
2368 2.72 2.01 1.37 -1.13 0.88 -1.13 3.84 2.01
1776 0.88 0.37 0.89 -2.78 0.35 -2.78 1.51 0.37
1421 0.28 -0.22 0.25 293 0.12 293 0.54 -0.22
) Constant Viscosity Mantle, 0-650 km
Wavelength, Bathymetry Geoid SS Composition
____km amp phase amp phase amp phase amp phase
7104 0.65 1.69 4.03 1.69 0.13 -1.45 2.95 1.69
3552 0.53 -1.18 2.58 -1.18 0.12 197 2.61 -1.18
2368 0.37 2.63 1.46 2.63 0.09 -0.51 2.04 2.63
1776 0.34 0.72 1.14 0.72 0.09 -2.42 2.14 0.72
1421 0.12-1.24 0.34 -1.24 0.04 1.90 0.84 -1.24
Mantle with Low Viscosity Zone, 0-650 km
Wavelength, Bathymetry Geoid 5SS Temperature
km amp phase amp phase amp phase amp phase
7104 0.72 1.69 396 1.69 0.15 -1.45 0.52 1.69
3552 1.04 -1.22 267 -1.22 0.28 1.92 0.97 -1.22
2368 3.29 2.12 0.38 2.12 1.32 -1.02 455 2.12
1776 0.84 0.32 0.94 -2.83 0.48 -2.83 1.65 0.32
1421 0.24 0.13 0.33 -3.01 0.18 -3.01 0.61 0.13
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Inversion for both temperature and compositional variations

Constant Viscosity Mantle, 0-150 km

Wavelength, Bathymetry Geoid SS Temperature Composition
km amp phase hase am hase am hase hase
7104 1.59 1.59 . .S . . . 1. .61 -2.
3552 1.65 -1.33  3.01 -1.33 2.73 -1.81 2.88 -1.76 1.59 0.69
2368 1.10 2.42 188 2.42 142 -1.12 1.12 -1.20 2.89 2.21
1776 0.74 0.75 1.19 0.75 1.55 -3.00 1.33 -3.07 2.56 0.35
1421 0.27 -146 041 -1.46 0.84 -2.62 0.81 -2.56 0.86 0.15
Mantle with Low Viscosity Zone, 0-150 km
Wavelength, Bathymetry Geoid SS Temperature Composition
km am hase hase amp phase amp phase amp phase
7104 1.56 1.57 %.73 i.57 3.53 0.99 3.59 1.05 1.63 -2.63
3552 2.84 -1.42 250 -142 273 -1.81 3.13 -1.74 0.96 -0.49
2368 292 221 125 221 142 -1.12 0.63 -1.32 3.74 2.15
1776 1.62 0.67 0.57 0.67 1.55 -3.00 1.10 3.09 2.65 045
1421 0.52 -1.37 0.22 -1.37 0.84 -2.62 0.83 -2.47 0.67 -0.32
Constant Viscosity Mantle, 0-300 km
Wavelength, Bathymetry Geoid 5SS “Temperature Composition
km amp phase hasc am hase ami hase hase
7104 1.10 1.64 3.8 .5 . . . .05 -2.
3552 095 -1.26 291 -1 26 273 -1.81 2.80 -1.78 2.18 1.05
2368 0.60 2.55 1.62 2.55 142 -1.12 1.26 -1.17 2.26 2.19
1776 046 0.78 1.12 0.78 1.55 -3.00 1.42 -3.04 2.25 0.30
1421 0.18 -1.49 0.40 -1.49 0.84 -2.62 0.83 -2.58 0.87 0.26
Mantle with Low Viscosity Zone, 0-300 km
Wavelength, Bathymetry Geod SS Temperature Composition
km amp phase amp phase amp phase amp phase amp phase
7104 .30 1.63 3.60 1.63 3.53 0.99 3.52 1.04 1.88 -2.48
3552 2.75 -1.41 2.57 -1.41 273 -1.81 3.18 -1.73 1.03 -0.55
2368 2.56 2.01 1.29 -1.13 142 -1.12 0.55 -1.10 4.01 2.01
1776 0.61 0.50 0.61 -2.64 155 -3.00 1.25 -3.06 197 0.30
1421 0.21 -1.13 0.19 2.01 0.84 -2.62 0.80 -2.51 0.68 0.00
Constant Viscosity Mantle, 0-650 km
Wavelength, Bathymctry Geoid SS Tcmpcrat.lturc Composittlion
km phase amp phase amp phase amp phase am ase
7104 06 .67 4.15 1.67 3.53 0.9 3.?7 1.01 35;7 '253
3552 0.55 -1.21 271 -121  2.73 -1.81 2.78 -1.79 2.43 1.18
2368 0.35 2.67 138 2.67 142 -1.12 1.32 -1.16 1.89 2.17
1776 0.31 0.80 1.02 0.80 1.55 -3.00 1.46 -3.04 2.03 0.28
1421 0.13 -1.52 0.38 -1.52 0.84 -2.62 0.84 -2.58 0.82 0.28



Mantle with Low Viscosity Zone, 0-650 km

Wavelength, Bathymetry Geoid SS Temperature Composition
km phase amp phase am hase am hase amp phase
= 04 0.75 1.66 4.10 1.66 3.§3 6.59 3g7 '1.62 1.65 -2.31
3552 1.16 -1.28 297 -1.28 2.73 -1.81 3.02 -1.76 0.90 0.83
2368 325 2.14 038 2.14 142 -1.12 0.20 -2.03 4.30 2.12
1776 0.52 0.48 0.58 -2.67 1.55 -3.00 1.28 -3.08 1.64 0.30
1421 0.11 -096 0.15 2.18 0.84 -2.62 0.84 -2.53 0.53 0.09
Joint inversion for Temperature and Composition,
Composition variations constrained to be shallow
Constant Viscosity Mantle, 0-150 km
Wavelength, Bathymetry Geod SS Temperature Composition
km amp phase amp phase amp phase amp phase amp phase
7104 0.38 241 349 137 375 1.28 395 1.30 264 -197
3552 2.10 -1.32  3.36 -1.48 1.77 -1.70 2.36 -1.61 0.66 -0.52
2368 2.63 222 120 2.51 1.87 -1.19 1.31 -1.33 342 2.11
1776 1.62 0.57 0.65 1.16 1.52 -2.96 1.22 -3.09 2.34 0.39
1421 0.40 -093 0.49 -193 0.73 -2.70 0.76 -2.57 0.66 -0.06
Mantle with Low Viscosity Zone, 0-150 km

Wavelength, Bathynl::uy Geoit:i Sﬁ ‘Temperature Composition
km am ase am ase am ase amp phase am hase

. ; . . . 1. 3.65 1.25 255 -'2.63

3552 291 -142 247 -146 2.67 -1.80 3.07 -1.72 1.08 -0.59
2368 239 226 1.84 224 1.18 -1.07 0.57 -1.24 3.20 2.21
1776 1.30 0.75 1.13 0.58 1.44 -3.01 1.12 3.12 2.21 0.47
1421 0.49 -1.50 0.29 -1.07 0.82 -2.61 0.83 -2.48 0.56 -0.33

Constant Viscosity Mantle, 0-300 km

Wavelength, Bathymetry Geoid 53 Temperature Composition
km amp phase amp phase am hase am hase am hase
7104 083 -1.93 4.57 1.48 7.53 lT.43 3.53 '1.33 §.§3 -1.76
3552 1.80 -1.33 337 -141 0.70 -1.56 1.84 -1.47 0.89 -1.19
2368 294 2.17 091 2.88 1.81 -1.20 1.80 -1.34 3.49 2.09
1776 1.79 0.52 0.57 146 1.31 -291 1.46 -3.06 2.25 0.41
1421 0.42 -0.72 0.55 -2.05 0.59 -2.78 0.90 -2.61 0.61 -0.13



Mantle with Low Viscosity Zone, 0-300 km
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Wavelength, Bathymetry Geoid SS Temperature Composition
km amp phase phase amp phase amp phase hase
— 7104 0.54 -2.22 427 144 315 1.38 322 1.40 ;gi -1.83
3552 2.86 -1.42 253 -147 2.65 -1.79 3.62 -1.71 1.16 -0.69
2368 2.54 222 184 225 0.65 -0.80 0.09 0.50 3.02 2.24
1776 1.29 0.80 137 044 099 -2.99 0.88 3.04 1.82 0.62
1421 0.57 -1.64 0.34 -024 0.64 -2.58 0.86 -2.42 0.49 -1.10
Constant Viscosity Mantle, 0-650 km
Wavelength, Baxhyn::u'y Geo:}:i SE Temperature Composition
km phase am ase amp phase amp phase am hase
7104 1.22 -1.66 4. 1.5 1.57 1.54 3.34 1.56 E.b -1.62
3552 1.84 -1.39 3.04 -1.33 0.09 -0.64 1.39 -1.28 1.40 -1.42
2368 3.12 2.15 0.83 3.13 1.64 -1.19 242 -1.35 3.60 2.09
1776 1.86 0.51 0.54 1.55 1.17 -2.88 2.03 -3.04 2.23 0.43
1421 0.43 -0.67 0.55 -2.07 0.54 -2.81 1.38 -2.62 0.58 -0.22
____Mantle with Low Viscosity Zone, 0-650 km
Wavelength, Bathymetry Geoid SS Temperature Composition
km amp phase am hase am hase amp phase amp phase
7104 1.16 -1.70 4.’%3 lI.53 l.gﬁ 1.52 2.70 1.54 2.97 -1.65
3552 1.94 -1.31 3.44 -1.45 1.27 -1.64 3.25 -1.55 1.13 -1.01
2368 240 226 1.86 2.23 1.09 -1.04 0.99 -1.21 3.32 2.23
1776 1.27 0.80 1.33 0.47 1.15-3.00 1.88 3.07 1.88 0.64
1421 0.56 -1.63 0.32 -0.37 0.70 -2.58 1.63 -2.44 0.56 -1.28

0-150 km, 0-300 km, 0-650 km = depths over which temperature or composition is
allowed to vary

amp = relative spectral amplitude. The amplitudes of both observed and predicted data
profiles are normalized by dividing by the average spectral amplitude of the observed
profile. The amplitudes of model parameters are normalized by dividing by the average
spectral amplitude of the parameter profile.

phase = phase in radians



Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure Captions

Schematic paths of S and SS phases. For the range of epicentral distances
considered in this study the bottoming depth for S ranges from 1450 to
2370 km, and for SS from 670 to 900 km.

An example of the measurement of SS-S differential travel time for the
event of December 24, 1985 (10 km focal depth), at GDH (63° epicentral
distance). (a) “Synthetic” SS pulse generated from S. The S pulse is
windowed and attenuated to account for the additional time that SS travels
in the mantle (t* = 3 s), and a ©/2 phase shift is applied. (b) Windowed SS
wave pulse. (c) Cross-correlation of the trace in (b) with that in (a). The

differential travel time residual is -5.04 s.

Distribution of earthquakes (triangles) and seismograph stations (circles)
used to measure SS-$S differential travel times. Stations are from the
GDSN, NARS, and GEOSCOPE digital arrays. Earthquakes are from the
Harvard CMT catalogue (generally my, > 5.0) from thé years 1977-1987.
Lambert equal area projection with pole of projection at 45°N, 40°W.

(a) Map view of SS-S residuals relative to PREM (Dziewonski and
Anderson, 1981], corrected for Earth ellipticity and seafloor bathymetry.
Residuals are plotted at the SS bounce point. The size of each symbol
scales linearly with magnitude of the residual. Lambert equal area

projection with pole of projection at 40°N, 60°W. Negative residuals



Figure 2.5.

Figure 2.6.

Figure 2.7.

Figure 2.8.
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indicate either early SS or late S. Plate boundaries are from DeMets et al.
[1990].

(b) Same as (a) but including data only for SS bouncepoints on lithosphere
younger than 100 My.

SS-S travel time residual versus square root of seafloor age for data from
0-60°N. Each plotted point represents the weighted mean of 14 adjacent
data points. Weights are constructed from variances determined as
discussed in Appendix A. Horizontal and vertical bars are standard errors
of the means of the travel time residuals and (agc)m. Linear regression
yields a slope of -0.68 + 0.08 s/ (My) 172 for a 0-100 My age range (solid
line) or -0.76 £ 0.09 s/ (My)!/2 for a 0-80 My range (dashed line).

Age-corrected SS-S residual (see text) versus azimuth 6. Each plotted
point represents the weighted mean of 10 adjacent data points. The solid
curve shows the best-fitting 40 variation derived from these data. The
dashed curve shows the preferred model of Kuo et al. [1987], which
corresponds to an alignment of the a axis of olivine in the approximate

direction N13°W.,

(a) Map view of age-corrected SS-S residuals.
(b) Same as (a) but including data only with SS bounce points on
lithosphere younger than 100 My.

Map view of the distribution of sampling azimuths. Lines indicate the

wave path azimuth at the SS bounce point. Mercator projection.
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Figure 2.9.

Figure 2.10.

Figure 2.11.

Age-corrected SS-S residual versus latitude along the Mid-Atlantic Ridge
from 10 to 90°N. The residuals shown are moving averages (such that
each point is used twice) of 12 adjacent data points. Bounce points on
lithosphere of age 0-100 My are used. The approximate locations of
several fracture zones (Fifteen-Twenty, Kane, Atlantis, Oceanographer,
and Charlie-Gibbs, denoted by abbreviations) and of the Iceland and
Azores hotspots are indicated.

Linear correlation, by highest harmonic degree removed from the geoid, of
observed SS-S residual with geoid height measured at the corresponding
SS bounce point. Both travel time and geoid residuals are age-corrected.
First the raw [Marsh et al., 1986] geoid data are correlated with SS8-§
residuals and a slope and correlation coefficient determined. Then a geoid
reference field [Lerch et al., 1979] up to degree and order 2 (with taper to
degree and order 6) is calculated and removed from the geoid data, the
slope and correlation coefficient with SS-8 calculated, and so on for
higher harmonic degrees [ removed from the geoid data, with appropriate
tapers (up to [+ 4). (a) Linear correlation coefficient between geoid and
SS-S residuals vs. highest harmonic degree and order removed from the
geoid. (b) Slope of the correlation between geoid and SS-S data, as a
function of highest harmonic degree and order removed from the geoid.
Extra points at degree and order 10 are obtained by using different tapers
(no taper, taper to [ = 14, and taper to [= 13).

Comparative plots of age-corrected (a) bathymetry, (b) geoid, and (c) SS-S



Figure 2.12.

Figure 2.13.
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residual along the Mid-Atlantc Ridge, 10-65°N. Bathymetry and geoid
have been high-pass filtered (see text). All of the residuals shown are
moving averages of 10 adjacent data points. Bounce points from
lithosphere of age 0-100 My are used, except that data from the Labrador

Sea region are omitted.

Upper mantle portion of the kernels for geoid and topography at two
wavelengths A = 2r/k for two viscosity models. The convecting region in
both models is overlain by a high-viscosity layer 40 km thick, with
viscosity 10# that of the underlying mantle.

(a) High-viscosity lid is underlain by a mantle of uniform viscosity and
other physical parameters.

(b) High-viscosity lid is underlain by a zone extending to a depth of 200
km having a viscosity equal to 0.01 that of the underlying mantle.

Upper mantle portion of the kernels for geoid and topography at two
wavelengths in spherical versus cartesian coordinates. The convecting
region is overlain by a high-viscosity layer 40 km thick in each of two
models for viscosity structure.

(a) Underlying mantle is of uniform viscosity. Cartesian kernels are for
4000 km wavelength (solid lines) and spherical kemels are for (=10
(dashed lines).

(b) High-viscosity lid is underlain by zone extending to 200 km depth
having a viscosity equal to 0.01 that of the underlying mantle. Cartesian
kernels are for 4000 km wavelength and spherical kernels are for /= 10.
(c) Same as (a) but with Cartesian kernels for 6667 km wavelength and
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Figure 2.14.

Figure 2.15.

spherical kernels for {= 6.
(d) Same as (b) but with Cartesian kernels for 6667 km wavelength and
spherical kernels for (= 6.

Results of combined inversion of geoid, bathymetry, and SS-S travel time
residuals for upper mantle temperature variations. The viscosity structure
is taken to consist of a 40-km-thick high-viscosity lid overlying a constant-
viscosity halfspace.

(a) Three solutions for along-axis temperature variations: Dotted line:
Temperature perturbations constrained to be uniform over 0-150 km
depth. Long-dashed line: Temperature perturbations constrained to be
uniform over 0-300 km depth. Short-dashed line: Temperature
perturbations constrained to be uniform over 0-650 km depth.

(b) Observed (solid line) and predicted along-axis profiles of SS-S wravel
time residual. The “observed” profile is actually a filtered version of the
observations, containing only the wavelengths used in the inversion (1400
to 7100 km). Predicted profiles were calculated from equation 5. Line
types correspond to those of the temperature models.

(c) Observed and predicted along-axis geoid profiles. Same treatment as
in (b).

(d) Observed and predicted along-axis bathymetry profiles. Same

treatment as in (b).

Same as Figure 2.14 except for that the viscosity structure includes a zone
extending from the base of the lid to a depth of 200 km with a viscosity
equal to 0.01 that of the underlying mantle.



Figure 2.16.

Figure 2.17.

Figure 2.18.
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Results of combined inversion of geoid, bathymetry, and SS-S travel time
residuals for variations in upper mantle composition (Mg#). The viscosity
structure is taken to consist of a 40-km-thick high-viscosity lid overlying a
constant-viscosity halfspace.

(a) Three solutions for along-axis composition variations: Dotted line:
Composition perturbations constrained to be uniform over 0-150 km
depth. Long-dashed line: Composition perturbations constrained to be
uniform over 0-300 km depth. Short-dashed line: Composition
perturbations constrained to be uniform over 0-650 km depth.

(b) Observed (solid line) and predicted along-axis profiles of SS-S travel
time residual.

(c) Observed and predicted along-axis geoid profiles.

(d) Observed and predicted along-axis bathymetry profiles.

Same as Figure 2.16 except for that the viscosity structure includes a zone
extending from the base of the lid to a depth of 200 km with a viscosity
equal to 0.01 that of the underlying mantle.

Results of combined inversion of geoid, bathymetry, and SS-S travel time
residuals for both upper mantle temperature and composition variations.
The viscosity structure is taken to consist of a 40-km-thick high-viscosity
lid overlying a constant-viscosity halfspace.

(a) Three solutions for along-axis temperature variations: Dotted line:
Composition perturbations constrained to be uniform over 0-150 km
depth. Long-dashed line: Composition perturbations constrained to be
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Figure 2.19.

Figure 2.20.

Figure 2.21.

uniform over 0-300 km depth. Short-dashed line: Composition
perturbations constrained to be uniform over 0-650 km depth.

(b) Three solutions for along-axis composition variations: Dotted line:
Composition perturbations constrained to be uniform over 0-150 km
depth. Long-dashed line: Composition perturbations constrained to be
uniform over 0-300 km depth. Short-dashed line: Composition
perturbations constrained to be uniform over 0-650 km depth.

(c) Observed (solid line) and predicted along-axis profiles of SS-S travel
time residual.

(d) Observed and predicted along-axis geoid profiles.

(e) Observed and predicted along-axis bathymetry profiles.

Same as Figure 2.18 except for that the viscosity structure includes a zone
extending from the base of the lid to a depth of 200 km with a viscosity
equal to 0.01 that of the underlying mantle.

Same as Figure 2.18 but compositional variations constrained to be from

0-50 km depth only.

Same as Figure 2.19 but compositional variations constrained to be from

0-50 km depth only.
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Figure 2.6
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Figure 2.8
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Figure 2.9
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SPHERICAL VS. CARTESIAN
(a) CONSTANT VISCOSITY (A = 4000 km)
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SPHERICAL VS. CARTESIAN
(c) CONSTANT VISCOSITY (A = 6667 km)
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Chapter 3

Differential Shear Wave Attenuation and Its Lateral Variation

in the North Atlantic Region

INTRODUCTION

The rate of attenuation of seismic waves provides important information comple-
mentary to that provided by seismic velocities. Seismic attenuation can be strongly
affected by variations in the physical state and temperature field of the Earth’s interior.
Recent analysis of global variations in Q structure using long-period surface waves
suggests that the most significant variations are confined to the upper mantle low-velocity,
low-Q zone [Ritzwoller et al., 1989] and that the main contributors to these variations are
the mid-ocean ridges (M.H. Ritzwoller, pers. comm., 1989). Earlier studies with body
waves suggest that the upper mantle beneath mid-ocean ridges should display a
significantly greater than average level of S-wave absorption [e.g., Molnar and Oliver,
1969; Solomon, 1973]. A more detailed analysis of mantle attenuation beneath ridges and
its variation with lithospheric age would do much to sharpen the inferences from global
models and to assess whether the observed lateral variations reflect differences in the
percentage of partial melt [Ritzwoller et al., 1989] or only in temperature.

There is considerable difficulty in relating laboratory experiments on seismic

properties to propagation characteristics in the mantle because of differences in pressure
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and temperature conditions beetween the two environments. Moreover, most laboratory
experiments are conducted at frequencies much greater than those in the seismic wave
band. Direct quantitative measurement of variations in Q in the Earth are therefore
important. In this paper we present measurements of differential shear wave attenuation in
the north Atlantic and its vaniation with lithosphere age, and we utilize thermal models to
interpret the observations in terms of an empirical relation between differential attenuation
and temperature. Our approach is to measure the spectral amplitude ratio of long-period
SS and S waves and to attribute variations in this ratio to differential attenuation of the SS
waves in the upper mantle near the bounce points of these surface-reflected phases. This
work is a complement to our study of SS-S differential travel times in the north Atlantic
[Sheehan and Solomon, 1991; Chapter 2]. Sipkin and Jordan [1980b] and Revenaugh
and Jordan [1987] used the ScS phase as an effective tool to map lateral variations in
Qscs, which measures the vertically-averaged Q of the entire mantle. The SS-S differential
attenuation measurement does not sample the significant lateral heterogeneity at the base of
the mantle [Dziewonski, 1984] as does multiple ScS. Such measurements thus provide an
important complement to Sc$ studies and can serve to isolate the upper mantle contribution
to Q. The SS path segment in the upper mantle is not as nearly vertical as ScS, but many
more paths are possible for SS because shallow sources can be employed, in contrast to
Sc8y, for which deep sources are normally required to avoid interference from surface
waves. The most important result of this study is the documentation of an increase in Qg
in the upper mantle with increasing plate age. We also examine along-axis variations in
differential attenuation, and we test whether they might be produced by along-axis
variations in temperature, such as those derived from the inversion of along-axis variations

in SS-S travel times, geoid, and bathymetry [Sheehan and Solomon, 1991; Chapter 2].



MEASUREMENT OF DIFFERENTIAL ATTENUATION

The seismic data used in this study consist of long-period S and SS phases recorded
at digital stations in the Global Digital Seismic Network (GDSN) [Peterson et al., 1976;
Peterson and Hust, 1982], the Network of Autonomously Recording Seismographs
(NARS), [Nolet and Viaar, 1982}, and the GEQSCOPE network [Romanowicz et al.,
1984]. We use only transversely polarized (SH) seismograms (rotated from N-S and E-W
components) to avoid interference from the SKS phase and contamination from P-SV
conversions at the base of the crust and other near-surface discontinuities.

A spectral ratio method is utilized to determine the differential attenuation between
the phases SS and S [e.g., Teng, 1968; Schlue, 1981]. The spectral amplitude A of an S-
phase can be written as the product of terms for source Ag(©,0,0), instrument Aj(w),
crustal layering at the source Acs(®) and receiver Ac{®), and geometrical spreading G and

attenuation t* along the path, as

A(0) = A)(©,0,0) Ai(0) Acs(@) Ac(®) G exp (-x f ) (3.1)
where
1* = ds
Q(s) V(s)
path (3.2)

and Q and V are the quality factor and wave velocity along the path s. For a given source
and station, the SS phase will have the same values of A, A;, Acs, Acr as the S phase, so
taking the natural logarithm of the amplitude ratio,



100

m(Ass/As)=-n f(t;s-(;)=-7tf5t. (3.3)

where the differential attenuation 8t* = t*ss - t*s. Thus an estimate of 3* may be
obtained from the negative of the slope of the log of the amplitude ratio.

In practice, the digital long-period seismograms are rotated, and the transverse (SH)
component is windowed to isolate the S and SS pulses (Figure 3.1a). Constant window
lengths of 100 s are used for both the S and SS phases. A Kaiser-Bessel [Harris, 1978
taper with a = 3 (the parameter a controls the width of the central window versus the
sidelobe amplitude) is applied to each windowed pulse. This taper is an effective tool for
reducing amplitudes at the front and the tail of the window and acts to reduce the effects of
signals not associated with the phase of interest. We find that it is crucial to form narrow
windows around the S and SS pulses, as the differential attenuation values can vary by as
much as 1 s depending on how S and SS are windowed. The amplitude spectrum of the
isolated phase is then obtained for the frequency band 0.01 t0 0.15 Hz. The log of the
amplitude spectrum is calculated and then smoothed by taking running averages over a
0.04-Hz band (Figures 3.1b-c). An amplitude ratio spectrum (Figure 3.1d) is formed by
subtracting the log spectrum of the S phase (Figure 3.1b) from that of the SS pulse
(Figure 3.1¢). The log amplitude ratio spectrum is smoothed by a moving average (0.02
Hz wide) before a linear fit is derived. In general the amplitude ratios decrease
systematically with frequency over the approximate band 0.01 to 0.08 Hz but above a
frequency between 0.07 and 0.11 Hz the amplitude ratios tend to increase. We attribute
this increase to noise in both the S and SS phases. We measure the slope of the log
amplitude ratio spectrum between a constant lower frequency of 0.016 Hz and three
different upper frequencies: 0.08, 0.095, and 0.11 Hz. The upper frequency cutoff that
gives the most negative (steepest) slope is that used to calculate 3t*. Choosing the steepest
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slope may bias us toward large values of 5t*, but our motivation is to obtain the most
robust measure of attenuation and to avoid the part of the spectrum where the slope is
likely to be susceptible to noise. Uncertainties involved with the measurement of Ot* are
discussed further in Appendix 3.A.

As an alternative technique for measuring differential attenuation we have also
constructed stacks of amplitude ratio spectra for groups of SS-S pairs. Stacks are
constructed by calculating a mean value of In (Ass/As) with corresponding standard error
at each frequency. A single slope is measured for the stacked spectrum, over the
frequency band 0.016 t0 0.10 Hz. If we were to retain the use of variable cutoffs with the
spectra going into the stacks the high frequency values of In (Ass/As) would not have a
contribution from each seismogram and would therefore not be representative of all of the
seismograms included in the stack. Since we choose a single cutoff frequency of 0.10 Hz
instead of picking the steepest slope, the values of St* from the stacks are consistently
lower than those measured individually. However, we find that the trends observed using
stacked data are nearly identical to those obtained from the individual measurements. The
analysis presented in the remainder of the paper is based on individual measurements.

DATA

The north Atlantic region has a good distribution of events and stations at suitable
epicentral distances. Source-receiver separations were restricted to lie in the range 55° to
86° to ensure clear separation of S and Sc$ at greater distances and to avoid triplication in
SS at shorter distances. The SS and S phases bottom in the mantle between about 670 km
and 2300 km depth. Digital seismograms selected for spectral analysis are from the travel
time study of Sheehan and Solomon [1991]; see also Chapter 2. The distribution of

sources and stations used to measure SS-S attenuation is shown in Figure 3.2. The
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majority of data used in this study comes from equatorial fracture zone earthquakes
recorded at North American and European stations, north and central Atlantic events
recorded at North American stations, Central American events recorded at European
stations, and Mediterranean and European earthquakes recorded in North America. The
data set consists of over 150 &* values with SS bounce points in the north Atlantic
(Figure 3.3). A tabulation of all 5t* values is given in Appendix II.

RESULTS

Contributions to 8t* can arise from any portion of the wave path. It is expected,
however, that 3t* will be controlled primarily by the upper mantle, where values of Q-!
are known to be large and variable [Solomon, 1972; Sipkin and Jordan, 1980b] and where
seismic velocity and other physical properties also show significant lateral variation. We
interpret the variations in 8t* in terms of lateral variation in Q within the crust and upper
mantle beneath the surface reflection points of the SS wave path. The validity of this
assumption is supported by the correlation, discussed further below, of 8t* with surface
tectonic fea.tures (and with sediment thickness) in the vicinity of the SS bounce point. In
addition, the 8t* values correlate with the SS-S travel time residuals (Figure 3.4), and
regression experiments by Kuo et al. [1987] and Woodward and Masters [1991] have
shown that the SS-S travel time residuals can be attributed to lateral variations in upper
mantle structure in the vicinity of the SS bounce point. The dt* values are further
interpreted in terms of such upper mantle processes as lithospheric aging and along-axis

heterogeneity in mantle structure.
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Epicentral Distance Dependence

The value of 5t* increases with epicentral distance A (Figure 3.5). Presumably this
effect is at least partly due to the S phase being increasingly less attenuated relative to SS
as a greater fraction of its path is in the high-Q deep mantle [Brune, 1977]. A simple
correction for epicentral distance A was made by fitting a straight line, ot* =(0.054+
0.019) A - 0.265, to the observed values of 5t* versus A (Figure 3.5). The slope of this
line is in approximate agreement with the predictions of several radial Q models [Anderson
and Hart, 1978; Anderson and Given, 1982] (Figure 3.6). The form of the correction for
epicentral distance dependence applied to the individual measurements is

St*corr = Ht¥old - (DA +2) + Ot¥gy 3.4)

where b = 0.054, a = -0.265, and St*sy = 3.67 is the mean of all values of ot*.
Application of this correction does not substantially affect the relation between &t* and

travel times (Figure 3.7).

Lirhosphen';: Aging

Cooling and thickening of the lithosphere should yield a tendency toward decreasing
seismic attenuation with increasing lithospheric age. A linear regression experiment was
performed to examine the correlation of 8t* with seafloor age. To obtain a representative
age value for the region spanning approximately one horizontal wavelength of the incident
(SS) wave, an average seafloor age was estimated fora 1° by 1° box centered on each SS
surface bounce point [Sheehan and Solomon, 1991]. Measurements from zones with
sediment thickness in excess of 1 km were excluded from the final age regression to avoid
potentially large contributions from the low-Q sediments. Although the SS wave samples

the upper mantle over a range of ages, we expect that the differential attenuation



104

contributed by the SS path segments on the younger and older sides of the bounce point
approximately cancel so that the age at the SS surface bounce point is representative.

The &t* values for the north Atlantic are consistent with the expectation of a
decrease in attenuation with increasing seafloor age. The slope derived by linear
regression of 8t* with square root of age is -0.20£ 0.07 s My-1/2 from 0 to 100 My, with
a linear correlation coefficient of -0.97 (Figure 3.8a). This slope is consistent with
observations of increasing Qs with lithosphere age [Canas and Mitchell, 1981; Sipkin and
Jordan, 1980b; Revenaugh and Jordan, 1987). The trend of decreasing attenuation with
increasing seafloor age is in the same sense as that for SS-S travel times for this region
[Sheehan and Solomon, 1991] (Figure 3.8b).

To look for other systematic variations in the differential attenuation
measurements, we correct for age t by removing the linear relation shown by the dashed

line in Figure 3.8a. The form of the age correction for the individual measurements is

St*con’ = at*old - (bt 1,2 + a) + st*av (3.5)

where b = -0.20, a = 4.71, and 5t*,, = 3.42 is the average of all data after application of

equation 3.4.

Spatial Pasterns of Age-corrected &¢*

After removal of the age-dependence of 6t*, we may then search for systematic
variations along the Mid-Atlantic Ridge. Such variations are seen in SS-S differential
travel times and are attributable to along-axis differences in upper mantle temperature and
composition [Sheehan and Solomon, 1991; Chapter 2]. A north-south profile of o>
values, constructed with averages of 10 adjacent data points grouped by latitude, is shown

in Figure 3.9. In order to maintain consistency with our earlier travel time study [Sheehan
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and Solomon, 1991] and to avoid possible biases associated with deviations from the
simple plate cooling model, the along-axis 8t* profile is constructed using data with
bounce points on lithosphere less than 100 My in age. Systematic variations of dt* are
evident with latitude, i.e., along the direction of the Mid- Atlantic Ridge axis. The along-
axis variations show a variety of scales, notably at wavelengths of about 1000 - 2000 km
in the region from about 15 to 35°N, and at about 6000 km wavelength from large o+
(high attenuation, low Q) in the south (20-35°N) to lesser 8t* (low attenuation, high Q)
farther north (45-60°N). These variations are qualitatively similar to the along-axis pattern
of travel time residuals [Sheehan and Solomon, 1991; Chapter 2] and are also plausibly
the result of thermal or compositional variations along the axis of the Mid-Adantic Ridge.

VELOCITY AND Q AS FUNCTIONS OF LITHOSPHERIC TEMPERATURE

Because of the strong temperature dependence of both shear wave velocity and
attenuation, the most straightforward hypothesis to explain the variations of SS-S travel
time residual and differential attenuation with age is that both variations are due entirely to
lateral vari-ation in the thermal structure of the lithosphere, i.c., cooling of the oceanic
plate. We have tested this hypothesis against the observed SS-S travel time delays as a
function of age by means of the plate cooling model of Parsons and Sclater {1977].
Geotherms for different ages, according to this model, are shown in Figure 3.10.
Temperature perturbations AT can be converted to a seismic velocity perturbation by
assuming that velocity varies linearly with AT and adopting a value for the partial
derivative of shear wave velocity with respect to temperature, dV¢/dT. The resulting two-

way travel time perturbation, as a function of horizontal wave number k, is given by
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av
At (k) =2 aTs AT(k,z) dz

2 2 12
V(@ 1 -pV @)
Zem S PYs (3.6)

where Vg(z) is from the reference shear velocity model [Dziewonski and Anderson, 1981),
z is depth, p is the ray parameter, generally taken to be a representative value (0.1375
s/km) for the range of epicentral distances considered here, and zpmin and zmax are the
upper and lower boundaries of the region of significant lateral variations in temperature.
We choose 50 My as a reference age, so that temperature anomalies are obtained by
subtracting the geotherm at 50 My from the geotherm at an arbitrary age t: AT;(z) =T,
(2) - Tso (z). We use a value of -0.6 m s-1 K-1 for dV¢/dT. This value is a factor of 1.5
higher than the experimental values of Anderson et al. [1968] and Kumazawa and
Anderson [1969] for olivine at standard temperature and pressure but is comparable to the
value of -0.62 m s-! K-! determined by McNuwst and Judge [1990] by a least squares fit of
Love-wave phase velocities to a temperature model for the lithosphere.

The SS-S travel time delays predicted by the plate cooling model (Figure 3.11) are
in excellent agreement with observed values (Figure 3.8b). The slope derived by linear
regression of observed SS-$ residual with square root of age is -0.68 £ 0.08 s My-172 for
bounce points between 0° and 60°N latitude and for ages between 0 and 100 My, with a
linear correlation coefficient of -0.85 (Figure 3.8b). The value obtained using only that
subset of the travel time data in common with the differential attenuation measurements is
-0.74 £0.10 s My-1/2. For comparison, the slope calculated from the plate cooling model
for 0-100 My age is -0.64 £ 0.01 s My~1/2, The trend of the travel time residual versus
age flattens out at about 80 to 100 My for both the observed and predicted residuals.
These results support the hypothesis that most, if not all, of the dependence of travel time

residual on plate age is due to plate cooling and does not require an additional contribution

from below the lithosphere.
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We next compare the age dependence of the observed St* values with lithospheric
temperatures predicted by the plate cooling model. Specifically, we infer possible Ql-
temperature relations through the simultaneous use of the observed dt*-age relation and
geotherms as functions of lithospheric age as predicted by Parsons and Sclater (1977).
Assuming that the differential attenuation 5t* arises solely from the upper mantle portion
of the SS path, we can express t* as

Bt* = dz
p.‘,,Q_c,(z) V(@ (Vi)' 37

where Qs and Vs are the shear wave Q and velocity along the path, respectively, and p is

the ray parameter.
We choose to parameterize Q further in terms of temperature, following the

Arrhenius law

Ql=Alexp[-E/ R T(2))] (3.8)

where the constant E is an activation energy and R is the gas constant. Substituting this

relation into equation 3.7, we obtain

- dz
Bt* =2 J FJRT(z)

plt.h A’ (Z) (1- szl(Z)) (3.9)

Thus an estimate of 3t* can be obtained by integration, given a velocity model, a
geotherm, and the constants A and E. From t* and T(z) at a number of lithospheric ages,
we can formulate an inversion for the parameters A and E by taking the derivatives of &t*

with respect to the model parameters and solving for perturbations to initial estimates of A
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and E that minimize the difference between observed and calculated values of 3t*. The use
of a constant activation energy might not be appropriate, as there may be several processes
acting to produce the observed attenuation, each with its own activation energy. Despite
these drawbacks, it is useful to try to parameterize Q in this way as it allows us to test
whether or not a single thermally activated process can describe the observations.

Since differential travel time versus age is well modelled if temperature variations
are confined to the lithosphere, we solve for Q as a function of temperature in the
lithosphere only. We assume a constant value of Q for the asthenosphere; specifically we
adopt a value of 130 for Q in the depth range 125 - 500 km, which is the average value for
this region given in the PREM Q model [Dziewonski and Anderson, 1981]. This
asthenospheric contribution to dt* obtained from integrating equation 3.7 over the depth
range 125 to 500 km is approximately 1.7 s.

The inversion for constants A and E indicates that equation 3.8 and the
assumption that lateral temperature varitiations are confined to the lithosphere provide a
good fit to observed values of dt* (Figure 3.12). The best fitting values of A and E are
1.67 and 35 kJ mol-], respectively.

We also tested whether the laboratory-derived Q-temperature relation of Sato and
Sacks [1989] also matches the observed dt* values. From equations (1) and (2) of Sato
and Sacks [1989] and assuming Qp/Qs = 2.25, we obtain

P(z)

Qq =225[3.5+—==lexp (gl

T(2)
0.073 -all

T(@) (3.10)

where P(z) is pressure as a function of depth z, Tn is the solidus temperature, T(z)/Tm(2)
is the homologous temperature, and g and a are piecewise constant functions of T/Tm. We
substitute this relation into equation 3.7 and integrate over depth to estimate the

lithospheric contribution to 8t* (Figure 3.12). Including the asthenospheric contribution
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1o t* would add a constant of about 1.7 s to the plotted 5t* values. The variation of t*
versus age predicted by equation 3.10 is much greater than that observed.

We also examined several other parameterizations of Qs-! in an attempt to assess
the importance of pressure and homologous temperature dependence. A best fit for the
parameterization Q! = A'! exp [ Tm(2)/T (2)] produced constants of 2.86 for A and 2.05
for ¢, and an equally good fit to the observed t* values as that obtained using equation 3.8.
The parameterization Q! =[A + b P(2)]'! exp [ Tm(z)/T (2)] proved to be more
problematic, as we were inverting for three parameters (A, b, and ¢) with a limited amount
of data, and strong tradeoffs between these different parameters contribute to a
nonuniqueness in the solution. We were able to obtain good fits to the data using widely
different values of A, b, and ¢, and we had difficulty converging to physically reasonable
solutions. For example, the values 2,1, and 1.7 for A, b, and ¢ produce an rms misfit of
0.12 s, whereas the values 3.5 x 10-2, -7.7 x 10-3, and 7.61 for A, b, and ¢ produce an
mms misfit of only 0.08 s. We would not expect a negative pressure dependence on Q as
this last relation predicts, as Q generally increases with depth in the Earth. Some form of
pressure dependence is warranted to avoid Q values that are too low at depth. A
parameterization in terms of an activation volume will be attempted in a future study.

Predicted distributions of Qg versus depth obtained using the different Q-
temperature parameterizations are shown in Figure 3.13 for two different lithospheric
ages. The Sato and Sacks [1989] relation predicts Q values which are in general higher
(except at very young ages) than the parameterizations more consistent with our data. The
three Qs profiles shown as dashed lines are all nearly equally consistent with our 5t*

observations versus age.
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DISCUSSION

The differences between the Q-!-temperature relations we derived for oceanic
lithosphere and those reported from laboratory measurements warrant discussion. The
Q!-temperature relation of Sato et al. [1989] was obtained from laboratory measurements
of P wave attenuation in peridotite at high temperature and pressure (but ultrasonic
frequencies). Sato and Sacks [1989] argue that relationships between Q and temperature
at ultrasonic frequencies can be extrapolated to the seismic band on the basis of the
observed frequency independence of Q at ultrasonic frequencies and the prediction of
reasonable mantle temperatures with their model. Their model actually tends to
underpredict mantle temperatures, and to account for this difference they invoke a relation
Qp/Qp = 1.7 to 2.5 where Qp' and Qp are quality factors of compressional waves for
seismic and laboratory studies, respectively. Thus, they suggest that seismic Q will be a
factor of about 2 greater than laboratory Q. We find that our seismically derived Ql-
temperature relation predicts smaller relative variations in upper mantle Q! resulting from
a given temperature difference than predicted by the experimentally obtained relations.
Many factors could contribute to these discrepancies, including differences in frequency,
pressure, temperature, and mineralogy. It is likely that different mechanisms for Q operate
under these different conditions, each process having its own activation energy. Possible
mechanisms for Q include partial melting, viscous grain boundary migration, and
dislocation motion [e.g., Guegen et al., 1981]. The observation that laboratory Q scales
with homologous temperature [Sato and Sacks, 1989] is purely empirical. We have found
that the 8t* values predicted by the Sato and Sacks [1989] relation can vary significantly
upon application of slightly different solidus temperatures. For example, we found that
the 8t* versus age relation predicted from the Sato and Sacks [1989] relation and
employing the Wyilie [1971] dry peridotite solidus differed significantly from that
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predicted using the Takahashi [1986] dry peridotite solidus. This cffect is most
pronounced at temperatures near to and exceeding the solidus.

We have not included the possibility of a small degree of melt fraction on ot*. The
influence of partial melt on seismic attenuation depends on the melt fraction and the
geometry of its distribution [Cooper and Kohisteds, 1986). Melt affects velocities through
a direct effect on the elastic moduli and a dispersive effect of relaxation or attenuation. The
volume fraction and geometrical distribution of any melt in the mantle, however, are not
known. Sato et al. [1989] and Kampfmann and Berckhemer [1985] downplay the
importance of the melt phase on anelasticity, at least for temperatures not significantly
above the solidus, and instead suggest that variations in temperature alone are sufficient to
produce observed Q variations in the Earth. In their experiments with peridotite Sato et al.
[1989] find that there is no large change in Q on first melting but rather a steady change
with temperature. Kampfimann and Berckhemer [1985] similarly observe no large effect at
slightly super-solidus temperatures. However, the Kampfmann and Berkhemer [1985]
samples included significant melt, so it is difficult to separate clearly the effects of melt
from those due solely to temperature. Goetze [1977] suggests that extrapolated laboratory
creep data on unmelted olivines are compatible with geophysical evidence regarding the
theology of the upper mantle. Solomon [1973] reported a narrow (no wider than 100 km
and shallower than 50 to 150 km deep) zone of low Q centered along the Mid-Atlantic
Ridge axis, which he attributed to the presence of partial melt, and Molnar and Oliver
[1969] found that S, does not propagate efficiently in the immediate vicinity of the Mid-
Atlantic Ridge, consistent with the presence of a narrow low-Q zone at the ridge. The
observations in this work lack the resolution to discern the presence of such a narrow low-
Q feature, but our data are consistent with the hypothesis that low Q beneath young

oceanic lithosphere is due simply to elevated temperature.
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The values that we obtain for Q! averaged over depth in the lithosphere are high,
with Q-1 values ranging from 0.016 to 0.033 (Q= 30 to 60), with the range in Q"! values
associated with the range of lithospheric ages from 0-100 My. This range is consistent
with the values (Q-! =0.018 t0 0.052, Q =19 to 55) found for Q-! in the upper 220 km
beneath the Lau back-arc spreading center [Flanagan and Wiens, 1990], but higher than
the value of 0.014 for Q-1 (Q = 70) at depths between 75 and 150 km beneath the East
Pacific Rise region obtained by Ding and Grand [1987]. The Ding and Grand [1987]
study did not report Q-1 values for depths shallower than 75 km. Canas and Mitchell
[1981] examined attenuation of Rayleigh waves in the north Atlantic and determined Q! as
a function of depth and age; their Figures 6 and 7 can be compared with our Figure 3.13.
They found that a low-Q zone is prominent in the upper mantle of all regions younger than
65 My in age but that such a zone is poorly developed in other regions. The Q1 values in
their low-Q zone range from approximately 0.010 to 0.020 (Q = 50 to 100).

We may also estimate the average difference in Q1! between S and SS in the upper
mantle by means of the simple equation of 8t* to the product of differential travel time and
average Q 1, where the travel time is the differential travel time of SS and S and t* has the
value of &;. We obtain Q-1 =0.012 (Q = 82). This value likely represents an average
Q! across the oceanic upper mantle (0-650 km). This value is consistent with the average
upper mantle Q-! value of 0.012 (Q = 82) obtained in a study of multiple ScS waves by
Revenaugh and Jordan [1987]. Thus our 5t* measurements are consistent with other
observations of seismic attenuation in the lithosphere and asthenosphere in general and of
low Q near active spreading centers in particular.

As a further test of our Q" 1-temperature relation, we take the upper mantle
temperature variations obtained from the inversion of SS-§ differential travel time
residuals, geoid, and bathymetry along the axis of the Mid-Atlantic Ridge [Sheehan and
Solomon, 1991; Chapter 2] and predict the corresponding pattern of dt* along the ridge
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axis. In Figure 3.14 we compare the observed pattern of along-axis variations in &t* with
those produced assuming the Q !-temperature relation from equation 3.8. The predicted
value of 5t* is obtained from equation 3.9, where T(2) is the sum of the Parsons and
Sclater (1977) geotherm at a reference age and the average differential temperature AT
obtained from the inversion. Below the lithosphere, T(z) is obtained by adding AT to an
adiabatic temperature gradient. We found that the predicted 8t* variations depend on the
choice of reference geotherm. To obtain an average representative &t* variation for the
range of lithospheric ages that we sample, we calculate S¢t* using the geotherm for each of
the seven ages of the data groups in Figure 3.12, and we perform an arithmetic average to
obtain the final 5t*. Along-axis profiles were calculated for all four Q-temperature
relations examined in this study.

Fits between the observed and predicted profiles of 8t* shown in Figure 3.14 are not
as good as we might have expected after a visual inspection of the apparent qualitative
correlation between travel time and 5t*. We obtain variance reductions of about 25% for
the models shown. A large part of the misfit in phase is due to an offset in the latitude at
which the peak residuals in travel time and 5t* are observed in the vicinity of 30°N. Both
the observed and predicted 8t* profiles indicate low attenuation in the region near 50°N. If
the observed 3t* profile had been included in the inversion it is likely that a better fit could
have been obtained for the 5t* data but at the expense of the fits to the geoid, travel time,
and bathymetry profiles. The along-axis 8t* profiles obtained using the Saro and Sacks
[1989] Q-temperature relation are somewhat different (Figure 3.15), with relative
variations in &* larger than the observed.

Profiles of 5t* were also constructed from temperature variations obtained from the
joint inversion of travel time, geoid, and bathymetry for both temperature and composition
[Sheehan and Solomon, 1991; Chapter 2]. These temperature profiles are influenced more
strongly by the travel time residuals (relative to geoid and bathymetry) than are those
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produced by the inversion for temperature only. No attempt has been made to include a
compositional dependence of Q°1, so the model 3t* values are those predicted from the
thermal perturbations only. We find that the 8t* profiles predicted from these temperature
variations are generally in somewhat better agreement with the 3t* observations than those
constructed using the temperature perturbations resulting from the inversion for

temperature variations only.

CONCLUSIONS

We have measured SS-S differential attenuation 6t* in the north Atlantic region from
about 150 wave pairs. After correcting 8t* for epicentral distance we find that 8t*
decreases with increasing seafloor age. We do not observe evidence for a narrow region
of very low Q along the axis of the Mid-Atlantic Ridge as reported by Solomon [1973],
although this may be due to the limited spatial resolution of the long-period shear waves
utilized in our study.

We have derived empirical Q!1-temperature relations by comparing measurements of
3t* with values predicted under the assumptions that 5t* variations arise from lithospheric
cooling and that the temperature structure as a function of lithospheric age is that given by
the plate cooling model [Parsons and Sclater, 1977]. The Q-l-temperature relation that
best fits our observations predicts smaller variations of Q-1with temperature, especially at
young ages, than the Q-temperature relation of Sato and Sacks [1989] derived from
laboratory measurements of Qp-! in a spinel lherzolite at ultrasonic frequencies.
Systematic variations of 5t* along the axis of the Mid-Atlantic Ridge are also seen. These
variations are broadly consistent with the along-axis variations in temperature derived from
an inversion of differential travel time residuals and geoid and bathymetry anomalies.

Theoretical along-axis profiles of 8t* are constructed from the along-axis variations
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derived in Chapter 2 of this thesis and the Q-temperature relation derived here.
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APPENDIX 3.A: ESTIMATION OF ERRORS FOR SS-S DIFFERENTIAL ATTENUATION (3t*)

It is important to quantify the uncertainties in thc measurements from individual and
stacked spectra of &*. After windowing and calculating spectra, the “quality” of each
individual 5t* measurement is rated and a grade is assigned. Our assignment of quality is
largely subjective and based upon visual inspection of the waveforms and amplitude
spectra of S and SS waves, and of samples of noise background, taking into account the
clarity of the seismogram and shape of the amplitude spectral ratio. An "A" quality grade
indicates that both S and SS pulses are well above the noise level and the amplitude
spectral ratio shows a smooth decrease with frequency. "B" quality indicates good signal
to noise ratios but an amplitude spectral ratio not as smooth, and a "C" quality grade
indicates lower signal to noise ratios or log spectral ratios poorly fit by a straight line. In
addition to A, B, and C grades, there were data that were rejected because of a poor signal
to noise ratio for either the S or SS phase, or an irregular spectral ratio.

As an objective means to obtain estimates of error, we examine the scatter in
measurements of various quality within a small region. We measured the root mean
squared (rms) difference between dt* of the same grade (A, B, or C) with bounce points
separated by less than 100 km and with differences in path azimuth at the bounce point of
less than 10°. A 100-km distance is less than the horizontal wavelength of SS (which is
about 180 km at 25 s period), so we do not expect much contribution to the rms difference
from lateral variation in structure. The rms difference for 8 residual pairs of A quality
which were within 100 km of each other was 3.4 s. For B quality picks, an rms
difference of 3.8 s was measured using 17 residual pairs, and for C quality picks 20
residual pairs yielded an rms difference of 3.3 s. The rms values are strongly affected by

a few outliers, so rms values were also calculated without these estimates. The resulting
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rms values were 1.9 s for 6 A-quality 8t* pairs, 2.8 s for 13 B-quality pairs, and 2.6 s for
17 C-quality pairs. Part of the reason that the rms values for the C-quality data are less
than those for the B-quality measurements is that the mean values of the first group of
measurements are smaller and thus the rms differences are also smaller. The C-quality
measurements are often smaller because of increased noise at high frequencies which
results in a flattening of the slope of the spectral amplitude ratios.

Because of the bias of C-quality estimates towards low values of dt*, we use the
estimates of the rms differences only as an approximate guide for estimating the average
overall errors in the A-, B-, and C-grade measurements. Our final choice of measurement
errors used for relative weighting of the differently graded measurements is 65 =1.9s,
op =2.7s,and 6c =3.5s. In the weighted regression experiments the A-, B-, and C-

quality measurements are weighted inversely by their measurement variance.
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Figure 3.1.

Figure 3.2.

Figure 3.3. -

Figure 3.4.

Figure 3.5.

Figure Captions

An example of the measurement of SS-S differential attenuation for the
event of December 24, 1985, at GDH. (a) Displacement seismogram with
S and SS phases windowed. (b) Natural log of the amplitude spectrum of
the S phase. (c) Natural log of the amplitude spectrum of the SS phase.
(d) Natural log of the ratio of the amplitude spectra of the SS and S
phases. Solid line is a least squares fit to the ratio from 0.01 to 0.08 Hz.

Distribution of earthquakes (triangles) and seismograph stations (circles)
used to measure SS-S differential attenuation. Stations are from the
GDSN, NARS, and GEOSCOPE digital networks. Earthquakes are from
the Harvard CMT catalogue (generally my, > 5.0) from the years 1977-
1987. Lambert equal-area projection with the pole of projection at 45°N,
40°'W.

Distribution of SS bounce points. Map projection as in Figure 3.2.

SS-S differential attenuation (8t*) versus SS-S travel time residual. Each
point represents the weighted mean of 38 data points adjacent in SS-S
residual (x-axis). Weights are constructed from variances as discussed in
Appendix 3.A. Horizontal and vertical bars are standard errors of the
means. Linear regression yields a slope of 0.10 £ 0.04.

SS-S differential attenuation versus epicentral distance. Each point

represents the weighted mean of 38 points adjacent in epicentral distance



Figure 3.6.

Figure 3.7.

Figure 3.8.

Figure 3.9.
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(x-axis). Horizontal and vertical bars are standard errors of the means.

Linear regression yields a slope of 0.05 £ 0.02 s/ degree (line).

Comparison of observed SS-S differential attenuation versus epicentral
distance with predictions from several radial Q models [Anderson and
Hart, 1978; Anderson and Given, 1982].

Distance-corrected SS-S differential attenuation (8t*) versus SS-S travel
time residual. Each point represents the weighted mean of 38 adjacent

data points. Linear regression yields a slope of 0.09 £ 0.04.

(a) Distance-corrected SS-S differential attenuation (8t*) versus square
root of seafloor age. Each point represents the weighted mean of 38
adjacent data points. Horizontal and vertical bars are standard errors of
the means. Linear regression yields a slope of -0.20 £ 0.07 &/ (My)172 for
an age range of 0-100 My (solid line).

(b) SS-S travel time residuals versus square root of seafloor age in the
north Atlantic, from Sheehan and Solomon [1991]. Each point represents
the weighted mean of 14 adjacent data points. Horizontal and vertical bars
are standard errors of the means. Linear regression yields a slope of -0.68
+0.08 s/ (My) /2 for a 0-100 My age range (solid line) or -0.76 + 0.09 &/
(My)1/2 for a 0-80 My range (dashed line).

(a) SS-S differential attenuation, corrected for epicentral distance and
lithospheric age, versus latitude along the Mid-Atlantic Ridge, 10-70°N.

Values shown are moving averages (such that each point is used twice) of
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Figure 3.10.

Figure 3.11.

Figure 3.12.

12 adjacent data points from lithosphere of age 0-100 My. See the text for
data reduction procedures. The location of the Iceland and Azores hotspots
are indicated.

(b) Age-corrected SS-S travel time residual versus latitude along the Mid-
Adantic Ridge, 10-70°N. The residuals shown are moving averages of 10
adjacent data points from lithosphere of age 0-100 My.

Geotherms at several different lithospheric ages predicted by the plate
cooling model of Parsons and Sclater [1977]. Solidus for peridotite
(dashed line) after Takahashi [1986].

SS-S differential travel time residual versus plate age, as predicted by the
plate cooling model at a number of discrete ages. Linear regression yields
a slope of -0.64 £ 0.01 s/ My!/2 for a 0-100-My age range (solid line).

Note that a 50-My age corresponds to zero residual by convention.

Observed (solid circles, with error bars) and predicted (triangles and
squares) dt* values versus age. Triangles show &t* values for the
lithospheric portion of the SS wave path calculated assuming plate cooling
geotherms, the Takahashi [1986] peridotite solidus, and the Q-temperature
relation of Sato and Sacks [1989]. Squares indicate dt* values for entire
upper mantle (0-500 km) portion of the SS wave path from nonlinear
iterative inversion of the observed 8t* versus age data for the constants A
and E in the Q-temperature relation Q! = A exp [-E /RT(2)]. This
relation is assumed to hold over 0-125 km depth; a constant Q of 130 is
assumed for 125-500 km depth.



Figure 3.13.

Figure 3.14.

(a) Qs versus depth (logjg scale) at a lithospheric age of 20 My,
calculated from nonlinear least squares inversion of observed dt* versus
age assuming different parameterizations of Q in terms of temperature and
pressure (dashed lines), and from forward modelling with the Sato and
Sacks [1989] Q-temperature relation (solid line). Middle dashed line, Q1
= 0.6 exp [-35/RT(z)]. Short dashed line, Q1=0.35exp [-2.05
Tm(z)/T(z)]. Long dashed line, Q1 =[2.0+ P(z)]-} exp [-1.7
Tm(2)/T(2)].

(b) Same as (a) but at 73 My age.

Observed (solid line) and predicted (dashed lines) 8t* along the Mid-
Atlantic Ridge, 10-70°N. “Observed” profile is actually a filtered version
of the observations, containing only the wavelengths 1400 to 7100 km for
comparison with the along-axis pattern of temperature variations inferred
from a joint inversion of travel-time residuals, geoid heights, and residual
bathymetry [Sheehan and Solomon, 1991; Chapter 2]. The predicted o*
profiles are calculated assuming one of the Q !-temperature relations
derived in this study (Q'! = A1 exp [-E/RT]) and the upper mantle
temperature variations from models of S heehan and Solomon [1991]; see
also Chapter 2. Two of the predicted profiles were calculated using the
temperature profiles [Sheehan and Solomon, 1991; Chapter 2] for models
with temperature variations constrained first to be in the upper 150 km,
then in the upper 300 km; the viscosity structure includes a high viscosity
lid over a constant-viscosity mantle. The other predicted profiles were

calculated from the temperature variations of Sheehan and Solomon
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Figure 3.15.

[1991] in which a joint inversion is performed for variations in both
temperature and composition in the upper 150 km, and then upper 300 km
for the same viscosity model. Mean values have been subtracted from

both the observed and model profiles.

Observed (solid line) and predicted (dashed lines) dt* along the Mid-
Atlantic Ridge, 10-70°N. The predicted dt* profiles are calculated
assuming the Sato and Sacks [1989] Q-temperature relation (equation
3.10) and the upper mantle temperature variations from models of
Sheehan and Solomon [1991]; see also Chapter 2. Two of the predicted
profiles were calculated using the temperature profiles [Sheehan and
Solomon, 1991; Chapter 2] for models with temperature variations
constrained to be in the upper 150 km, then in the upper 300 km; the
viscosity structure includes a high viscosity lid over a constant-viscosity
mantle. The other predicted profiles were calculated from the temperature
variations of Sheehan and Solomon [1991] in which a joint inversion is
performed for variations in both temperature and composition in the upper

150 km, and then upper 300 km for the same viscosity model.
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CHAPTER 4

UPPER MANTLE STRUCTURE IN THE VICINITY OF THE EAST
PACIFIC RISE INFERRED FROM SHEAR WAVE DIFFERENTIAL
TRAVEL TIMES, GEOID, AND BATHYMETRY

~ INTRODUCTION

The formation and evolution of the lithosphere and the interaction of mantle
convection with the surface plates can, in principle, be constrained by the determination of
variations in shear wave velocity in the upper mantle. Oceanic regions, and in particular,
mid-ocean ridge systems, are most amenable to examination of the processes which drive
the plates due to their simple crustal structure and young age relative to the continents. In
this chapter we investigate lateral variations in the velocity structure beneath the East
Pacific Rise by measuring differential travel times for the phase pair SS-S, and relate these
variations in travel time to depth and geoid anomalies in the region. Body wave methods
are well suited for resolving lateral variations in upper mantle structure at relatively short
(<1000 km) wavelengths. Differential travel times of shear wave phase pairs, in
particular, are an effective tool in the study of upper mantle heterogeneity [Sipkin and
Jordan, 1976, 1980a; Stark and Forsyth, 1983, Butler, 1979; Kuo et al., 1987,
Woodward and Masters, 1991; Sheehan and Solomon, 1991] and have the advantage that
source and receiver effects are approximately common to both phases and are thus largely

climinated by differencing. In addition, use of differential travel times eliminates any
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absolute timing errors. Differential imes also have the ability to constrain structural
variations in regions of the world where there are no sources or receivers. Under the
assumptions that the lower mantle is relatively homogeneous and that the paths in the
upper mantle are reasonably steep, the differential travel time anomaly can be associated
with upper mantle structure in the vicinity of the surface bounce point of the reflected (SS)
phase.

A number of previous studies have brought important contributions to our
understanding of upper mantle properties of the eastern Pacific. Surface wave dispersion
studies in the Pacific Ocean region [e.g., Leeds, 1975, Forsyth, 1975, Yu and Mitchell,
1979; Nishimura and Forsyth, 1985, 1988, 1989; Zhang and Tanimoto, 1990b] show a
clear relationship between the age of the seafloor and the seismic properties of the mantle.
Woodward and Masters [1991], in a global study of SS-S and PP-P differential travel
times, found the east Pacific region to be particularly slow. In the present study, we use
shear wave differential travel time residuals, in combination with geoid and bathymetry
data, to elucidate further the structure of the east Pacific region. Our data set allows us to
search for velocity anomalies associated with the East Pacific Rise and with the Galapagos
Spreading Center and Galapagos hotspot. In addition, we can compare the results from
this intermediate to fast spreading ridge system with our earlier study of the northern Mid-
Atlantic Ridge, a slow spreading ridge system [Sheehan and Solomon, 1991]. Several
authors [e.g., Stark and Forsyth, 1983; Zhang and Tanimoto, 1990b, Woodward and
Masters, 1991] have found that shear wave velocities in the east Pacific are significantly
slower than those observed in either the Atlantic or Indian Oceans. In addition, the
presence of anisotropy has been found to be more pronounced in the Pacific upper mantle
than in the Atlantic upper mantle (Montagner and Tanimoto, 1990] as is predicted by
models for flow-induced orientation of mantle olivine crystals [McKenzie, 1979; Ribe,
1989]. Woodward and Masters [1991] found that their Pacific data were consistent with
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the presence of weak anisotropy, although they suggested that lateral heterogeneity could
also have produced the observed azimuthal pattern. They did not resolve significant
azimuthal variations in the Atlantic portion of their data set.

Our analysis technique, developed in Chapter 2, involves the use of shear wave
differential travel time residuals in combination with geoid and bathymetry data. The
combination of geoid (or gravity) data with seismic data is an effective way to determine
Earth structure on scales ranging from global (Hager and Richards, 1989; McNust and
Judge, 1990] to local [Lines et al., 1988; Lees and VanDecar, 1991]. Several authors
[Watts et al., 1985; Haxby and Weissel, 1986] have suggested that bathymetry and
especially gravity (or geoid) data in the central and east Pacific regions show evidence for
small-scale (wavelength of a few hundred kilometers) convection. With our combined
data set and analysis we can search for evidence of small scale convection with the added

constraint of shear wave travel times.
GEOLOGIC SETTING

The Iéast Pacific Rise lies to the west of Central and South America and stretches
over 6000 km from the Juan Fernandez triple junction at 34°S to the Gulf of California.
Segments of the East Pacific Rise spread at rates as high as 162 mm/yr (full spreading
rate) at about 20°S (Figure 4.1). In comparison, spreading rates on the Mid-Atlantic
Ridge range from just 5 to 40 mm/yr. The East Pacific Rise separates the large Pacific
plate on the west from the Nazca and Cocos plates on the east. The triple junction between
these three plates lies at 2°N, 102°W. The Cocos plate is bounded on the west by the East
Pacific Rise, on the south by the Galapagos Spreading Center, and on the northeast by the
Middle America Trench. The Cocos plate includes the ascismic Cocos Ridge, which
trends NNE from 1°N, 90°W to 7°N, 84°W. A related feature is the Carnegic Ridge on
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the Nazca Plate from 0°N, 90°W to O°N, 82°W. A rough-smooth bathymetric boundary is
located at a distance of about 250 km to the west of the Cocos and Carnegie Ridges. The
Cocos plate is shallower and its gravity is higher than that predicted by plate cooling
models [Parsons and Sclater, 1977; Parsons and Richter, 1980]. Spreading rates on the
north-south spreading Galapagos Spreading Center average around 70 mm/yr
[Macdonald, 1989]. The Galapagos hotspot, just south of the Galapagos Spreading
Center at about 100°W longitude, is a site of active volcanism. Monnereau and Cazenave
[1988] found that the geoid-to-topography ratio in the region of this hotspot is not
consistent with that found for swells in the center of a plate. They attributed this

difference to the proximity of the Galapagos hotspot to the Galapagos Spreading Center.

DATA

Travel Time Data

The east Pacific was chosen as the study area because the very high spreading rates
on the East Pacific Rise offer an interesting complement to our study of the slow-
spreading Mid-Atlantic Ridge (Chapter 2) and because there is a convenient distribution of
earthquake sources and digital seismic stations to allow for a sufficiently dense sampling
of SS bounce points. We performed a search over all earthquakes in the Harvard centroid
moment tensor (CMT) catalog for the years 1980-1987 [Dziewonski et al., 1981;
Dziewonski and Woodhouse, 1983] supplemented by a listing of intraplate earthquakes
not included in the CMT catalog (E. A. Bergman, personal communication, 1991) and
over all GDSN digital seismic stations in order to find event-station pairs of the proper
epicentral distance which provide SS bounce points in the East Pacific Rise region.
Searches were also performed to find event-station pairs recoverable using the
GEOSCOPE broadband stations in the time periods for which we have data (January to



December of 1986 and January to May of 1988). The range in source-receiver separation
was taken to be 55° to 86° to ensure separation of S and Sc$ at the longer distances and to
avoid triplication in SS at shorter distances. A list of stations used in this study is
presented in Table 4.1. We use only transversely polarized (SH) seismograms (rotated
from N-$ and E-W components) to avoid interference from the SKS phase and
contamination from P-SV conversions at the base of the crust and other near-surface
discontinuities. Epicenters were obtained from the "Preliminary Determination of
Epicenters” of the U.S. National Earthquake Information Service (NEIS) for all events.
The final distribution of sources and stations used to measure SS-S differential travel times
is shown in Figure 4.2. Our study area extends from 25°S to 30°N lattude and 140°W to
80°W longitude, and includes a dense sampling of the Cocos plate. The majority of data
in this study comes from records of southern East Pacific Rise, Chile Rise, and Peru-Chile
subduction zone earthquakes recorded at North American stations. Other data include
Peru-Chile and Middle America trench events recorded at Hawaiian stations, Hawaiian
events and events from western North America recorded at South American stations
(BOCO and ZOBO), Central and North American earthquakes recorded at the DWWSSN
station AFI (Afiamalu, Western Samoa), intraplate events on the Nazca plate propagating
to North America and Hawaii, and central Pacific intraplate events propagating to North
American stations.

This search yielded over 1500 event-station pairs with the proper epicentral
separation. Data with SS bounce points on regions of thick sediments (> 0.5 km) and
thick crust off the coast of Central America [Ludwig and Houtz, 1979; Winterer, 1989]
were omitted. After winnowing the list because of station inoperation, poor signal to
noise ratio for the phases of interest, and interfering events, the final data set consists of
over 600 SS-S differential travel time residuals with bounce points in the cast Pacific
(Figure 4.3). A total of 21 digital stations (Table 4.1) and 342 different earthquakes
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(Table 4.2) were used in the final analysis. Uncertainties for each measurement are
adopted from the analysis in Chapter 2, Appendix 2.A. A tabulation of all residuals is
given in Appendix III.

Bathymetry Data
Bathymetric data are obtained from the corrected Digital Bathymetric Data Base (5’

grid) (DBDBSC) (U S. Naval Oceanographic Office, 1985]. DBDBSC data are corrected
for the deviation of water column acoustic velocity from the generally assumed value of
1500 m s-1. We obtain an average depth value for each SS surface bounce point by
averaging all of the bathymetric data within a 1° x 1° square centered on each point.

The bathymetry of the East Pacific Rise region is shown in Figure 4.3. The rise axis
is marked by depths generally shallower than 3000 m. To the west of the rise the seafloor
depth gradually increases with increasing age of the seafloor. At the western edge of the
map the depth is about SO00 m. To the east of the East Pacific Rise, however, the
bathymetry does not closely follow simple depth-age relations and is complicated by the
presence of the Galapagos hotspot and by the Middle America subduction zone. The
depth along. the crest of the Galapagos Spreading Center, about 2500 m, is generally
shallower than that of the East Pacific Rise.

Geoid Data

Geoid data are taken from a combined set of Seasat and GEOS3 altimeter data
[Marsh et al., 1986). The sea surface elevations are referenced to the [UGG 1980
Geodetic Reference System defined by an Earth semimajor axis of 6,378,137 mand a
flattening coefficient of 1/298.257 [Moritz, 1980]. The mean sea surface is presented in
the form of a 0.25° grid. The data have been corrected for orbit errors, instrument and

atmospheric propagation effects, and solid Earth and ocean tides. Since we are only
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interested in signatures related to upper mantle processes, we attempt to remove from the
data all other effects. Therefore, we retain only the components of the field with
wavelengths less than about 6000 km by subtracting the observed field up to degree and
order 7 assuming the GEM-T2 coefficients [Marsh et al., 1990] for the spherical harmonic
expansion of the Earth’s geoid and tapering the spectrum to degree and order 11 to avoid
truncation effects [Sandwell and Renkin, 1988] (Figure 4.4). The geoid field over the
East Pacific Rise and Cocos plate is characterized by positive anomalies over the East
Pacific Rise that fall off gradually with increasing plate age to the west. To the east of the
rise, however, the geoid does not follow the simple relation predicted by the plate cooling
model [Parsons and Richter, 1980] but rather is characterized by positive values over
much of the Cocos plate and a large positive anomaly presumably related to the slab
subducting under Central America [Hager, 1984]. The Galapagos hotspot is marked by a
short (400 km) wavelength geoid high superimposed on a northwest-southeast-trending

regional field with a low of -4 m.

METHOD

Data processing procedures and the waveform cross-correlation technique for

estimating differential travel time are as in Chapter 2.

RESULTS

Spatial Pattern of SS-S Residuals
The SS-S residuals are shown plotted at the SS bounce point in Figure 4.5. Much
scatter is observed, and a clear signal associated with the rise is not obvious. The

residuals far to the west of the rise (from longitude 130" to 140°W) are more negative
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(carlier SS) than the residuals in close vicinity to the rise, but a gradual decrease from slow
at the rise to fast off the rise is not apparent. Residuals to the south of the Galapagos
Spreading Center tend to be less by 1 or 2 s than those from bounce points to the north of
the Galapagos Spreading Center. The values of the SS-S residuals with bounce points on
the Cocos plate vary widely, though some coherent patterns emerge. There are groups of
carly and late residuals with a characteristic wavelength of approximately 1200 km,
patterns which are made more obvious when the data are smoothed and gridded. The
residuals in the vicinity of the Galapagos hotspot are positive. Positive residuals are also
found about 100-200 km to the northeast of the Galapagos hotspot.

Lithospheric Aging

Cooling and thickening of the lithosphere should yield a tendency toward an increase
in seismic velocity with increasing lithospheric age. A linear regression experiment was
performed to examine the correlation of the SS-S residuals with seafloor age. Firsta
gridded map of seafloor ages was constructed for the East Pacific Rise from a compilation
of data from several sources. Gridded age data from the map of Larson et al. [1985] were
provided by S. C. Cande (personal communication, 1991). Since these data only included
the age range of 0 - 6 My in our study area, we had to supplement them with data from
other sources. These additional sources included digitized isochrons from Sclater et al.
[1981] and magnetic anomalies from Klitgord and Mammerickx [1982], Atwater [1989],
and Arwater and Severinghaus [1989] and from the tectonic map of the Circum-Pacific
Map Project [1981]. The magnetic isochrons are assigned ages according to the polarity
reversal time scales of Kent and Gradstein [1986] and Berggren et al. [1985]. Plate age is
not well determined on parts of the Cocos plate due to its proximity to the magnetic
equator [Schouten, 1971}, and thus no ages have been assigned to such areas [Atwater

and Severinghaus, 1989]. We place constraints on seafloor age in such regions lacking



identified isochrons by assuming symmetric spreading and using the ages from isochrons
at an equal distance on the opposite side of the rise.

To obtain a reprsentative age value for the region spanning approximately one
horizontal wavelength of the incident (SS) wave, an average seafloor age was estimated
fora 1° x 1° box centered on each SS bounce point. To reduce scatter, measurements
whose bounce point depths differed by more than 1200 m from the depth predicted by the
regional depth-age relation were excluded from the age regression.

The SS-S residuals for the East Pacific Rise are shown plotted against the square
root of seafloor age in Figure 4.6a. The solid line represents the linear travel time - agel/2
relation derived from the data, but the figure indicates that the data are not well fitby a
straight line. The age dependence derived in Chapter 2 for the plate cooling model is
shown as a dashed line. The predicted slope is consistent with the longest wavelength
trends in the data and suggests that perhaps there is an age dependence to the travel times
but that several other competing processes are also contributing. The observed SS-S
residuals increase from 0 to 2.5 My/2 partly because the Galapagos hotspot region is
slow but not on zero-age lithosphere. Large positive residuals at 4.5 My/2 include SS
bounce points off the coast of Central America, perhaps due to unmodeled sediments or
increased crustal thickness.

We have calculated the “effective age” of the lithosphere by taking the depth and
estimating the age of seafloor of that depth predicted by the plate cooling model. This
procedure is consistent with the “lithospheric rejuvenation” hypothesis of Menard and
McNuzt [1982]. The term “rejuvenation” refers to the observation that many midplate
swells cool and subside at the same rate as normal (younger) lithosphere at the same
depth. Thus, thermal rejuvenation appears to produce lithosphere with many of the
properties of normal lithosphere of a younger age. The Galapagos hotspot and the
shallow Cocos and Carnegie ridges, for example, are regions of anomalously shallow
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depth in our study area, and are presumably related to some sort of heating event. For
other anomalously shallow regions included in this study (such as the majority of the
Cocos plate), the mechanism for shoaling is less clear. The slope of the SS-S travel time
residual versus square root of predicted age is -0.26 + 0.04 s/My1/2 for the age range 0-33
My (Figure 4.6b). This value is at least of the same sign as the relation predicted by plate
cooling and with that observed in the Atlantic (Chapter 2), but the magnitude of the slope
is still significantly lower than expected from the model.

To look for other systematic variations in the residuals, we correct for age by
removing the linear dependence on square root of age predicted by the plate cooling
model, approximately -0.7 s My-1/2 (Chapter 2). This value for slope is also in good
agreement with observations in the north Atlantic but admittedly is steeper than what we
have observed with our limited range of east Pacific data. Future work is warranted to
study further the relation between travel time and plate age in the east Pacific.

» The travel time residuals in the region of the East Pacific Rise are about 2 s larger
at a given bounce point age than those in the Atlantic. Part of this difference may be due to
the fact that since the Mid-Atlantic Ridge is slow spreading the zone of lithosphere of
young age is extremely narrow, whereas in the fast spreading Pacific it extends over a
much greater width. So even if the age at two SS surface reflection points is the same in
both of these studies, the upper mantle portion of the path in the Atlantic region will
include a greater proportion of older lithosphere than the Pacific region. The magnitude of
this effect would be about 1 s at young lithospheric ages (0-15 My) and less at older ages.

Anisotropy
Another systematic velocity variation that has been suggested as a possible
contributor to residual SS-S travel times is azimuthal anisotropy. As noted in Chapter 2,

the SS-S data from the north Atlantic do not show a consistent anisotropic effect. We
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performed least squares inversions on the age-corrected SS-S residuals from the Pacific to
determine best-fitting 40 patterns. The anisotropy indicated by our regression experiments
differs significantly from those found in the Atlantc. Our results indicate that for the 40
fit to the SS-S residuals uncorrected for age the slow directions for SS-S are N44°W and
N46°E and the peak-to-peak magnitude of the effectis 2.7 s (Figure 4.7a); for the 40
model fit to the age-corrected SS-S data the siow directions are N48'W and N42°E and the
magnitude is 3.4 s (Figure 4.7b). Our inversion for a 48 pattern of anisotropy provided a
variance reduction of 36% for both the uncorrected and the age-corrected SS-S residuals, a
reduction that is significant considering the number of free parameters involved.

These results should be imerpicted with caution, however, as our modelled
azimuthal pattern may be partly the result of unmodelled upper mantle heterogeneity, and
we lack data at many azimuths. The 40 model fits the data well in the azimuth range -40°
to +20°, but the fit is not good at -45° (where we have a peak in the predicted 40 pattern),
and the correlation of model to data is also poor in the vicinity of the +45° peak. The
azimuthal distribution of the data is shown in Figure 4.8. Inspection of Figure 4.8
indicates that the distribution of azimuths is not uniform, and that data of a given azimuth
tend to be clumped together geographically. Thus it is difficult to determine whether the
observed azimuthal signal is due to anisotropy or due simply to the geographic distribution
of lateral heterogeneity. The majority of the data at east-west azimuths come from Central
American events propagating to Hawaii, with bounce points in the region 20°N, -120°E.
The data at north-south azimuths come predominantly from Chile Rise events propagating
to North America. Most of these residuals are negative (early) and contribute to the
negative trough in the azimuthal patterns (Figures 4.7a, b). The data most inconsistent
with the 48 model come from the azimuth N60*W. These data are mainly from bounce
points west of the rise on seafloor of approximately 50 Myr age.
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Spatial Pattern of Age-corrected Residuals

A plot of age-corrected SS-S travel time residuals at the SS surface reflection point
(Figure 4.9) shows several interesting features. The pattern of alternating fast and slow
residuals, with a characteristic wavelength of 1200 km, is still visible in the Cocos plate
region. The Galapagos hotspot is marked by positive residuals. The residuals south of
the Galapagos Spreading Center are for the most part more negative than those to the
north. Residuals in the region 15°-30°N, 115°-130°W are positive. Far from the rise, at
130°-140° W longitude, the residuals show much scatter. Residuals along the coast of

Central America are positive.

ANALYSIS OF PROFILES

The sparse sampling of our data does not permit us to contruct a profile along the
axis of the rise as was performed for the north Atlantic in Chapter 2. However, we have
been able to construct several profiles across the East Pacific Rise and Galapagos
Spreading Center which allow us to examine more closely the relation of the observations
to plate age, and, after removal of the age dependence, to analyze anomalies orthogonal to
the ridge. The locations of the profiles are shown in Figures 4.3 and 4.4.

Profiles of SS-S travel time, geoid, and bathymetry values were constructed by
searching for all SS surface bounce points lying within 250 km (or 200 km for Profile 2)
of the profile line and then applying a weighted averaging scheme to produce a single
value every S0 km. To ensure complementarity of data sets, bathymetry and geoid height
values are obtained at each SS bounce point, and all are corrected for cooling and
subsidence with seafloor age. In this manner we effectively normalize all observations to
zero age. The age correction for SS-$ travel time data ( -0.7 s My-1/2) was given in an

earlier section. The age corrections for depth and geoid are described below.



The age correction for depth is based on an empirical depth-age relationship from
Schroeder [1984], which accounts for the thermal subsidence of oceanic lithosphere away
from spreading centers, and is appropriate for this part of the Pacific. The Schroeder
[1984] age-depth relation is d(f) = 2967 - 305 1172, where d is depth in meters and ¢ is time
in My. We also examined depth anomalies obtained using the Parsons and Sclater (1977]
depth-age relation, which was determined using depth data from outside of this arca. The
general trends observed using the Parsons and Sclater [1977] relation are not markedly
different from those obtained using the Schroeder [1984] relation, but we prefer the
Schroeder [1984] relation as more appropriate for this region.

The geoid-age correction is done in two different ways. In the first method the
theoretical geoid-age relation from the plate cooling model [Parsons and Richter, 1980} is
removed to obtain the geoid anomaly. The second method, after Hager [1983], takes into
accdunt the fact that we have already removed the low order signal from the geoid. Hager
[1983] made use of a global regionalization of plate ages [Mauk, 1977] and calculated the
predicted effect of plate cooling on the geoid. The predicted field was then expanded in
spherical harmonics up to degree and order 20. Our geoid-age correction after Hager
[1983] then consists of the following: we remove the full predicted field up to degree and
order 20, and then add the low order field (up to degree and order 7) back in. This
prevents us from removing the low order part of the geoid-age dependence twice
(empirically by the low degree and order reference geopotential field, and explicitly with
the theoretical geoid-age relationship). This is especially critical in the very fast-spreading
region of the Pacific included in this study, as the geoid-age dependence is dominated by
the low order signal. This sort of correction is not critical in the slow-spreading Atlantic,
where the geoid-age correction is dominated by wavelengths less than 4000 km, shorter
than those removed to obtain our residual geoid [Cazenave et al., 1986].

Error introduced into depth and geoid anomalies by isochron mislocation is difficult
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to estimate precisely, but for an error in age of 2 My, depth and geoid errors at 80 My
would be about 30 m and 0.2 m, respectively, while at 2 My, an error in age of 2 My
would have a much larger effect, giving depth and geoid errors of 350 m and 0.3 m. The
magnitude of this error highlights the importance of accurate age determination, especially
at young ages. The age correction is relatively more important for bathymetric data than
for the geoid, because the largest broad-scale variations in seafloor depth results from
lithospheric cooling effects, unlike the geoid.

Profile 1, East Pacific Rise south of triple junction

Profile 1 starts to the west of the East Pacific Rise on seafloor approximately 45 My
in age, passes over the ridge just south of the equator at 0.5 °S, 103.5 "W, and continues
to the east of the rise to approximately 92 *W (Figure 4.3, 4.4). Figure 4.10a shows the
seafloor age along the profile, with the rise axis marked by a line. The geoid high (Figure
4.10b) is centered to the west of the rise and is asymmetric, characterized by a steeper
gradient over the east flank of the rise than to the west. The bathymetry (Figure 4.10c)
correlates well with plate age, with the bathymetric high centered at the rise and a gentle
slope to the west. The SS-S travel time residuals along the profile are shown in Figure
4.10d. The data along this profile are all at similar azimuths (approximately N-S), so
azimuthal anisotropy can be discounted as a source of the variations. The travel time
residuals of Profile 1 do not show a strong correlation with age. In fact, the rise is marked
by a local minimum in the travel time residuals, with larger residuals (later arrivals)
immediately to the east and the west of the rise. This pattern is similar to the one found by
Schiue [1981] in a study of SS-S differential attenuation in the same region. To the west
of the rise the residuals decrease gradually, with short wavelength signals superimposed.
To the east of the rise the residuals drop off rapidly with age, in a manner similar to the
geoid signal, but then increase again at about 700 km east of the rise axis.



Figure 4.10e shows the residual geoid signal after correcting for plate cooling with
the method of Hager [1983]. In comparison, the geoid corrected according to the method
of Parsons and Richier [1980) is shown in Figure 4.10f, and the higher order geoid
(reference field up to degree and order 10 removed) is shown in Figure 4.10i. The high
order geoid does not have an age correction applied, as we assume that the age dependence
is dominated by the low order signal [Cazenave et al., 1986]. This predicted dominance
of the low-order geoid-age signal leads to a very small geoid-age correction if only the
high order portions of the predicted field are removed (Figure 4.10¢e). The age-correction
in Figure 4.10f reduces the geoid bulge in the immediate vicinity of the rise, but since the
geoid data far to the west of the rise show little age dependence, the age-correction
increases the geoid signal and produces a positive anomaly of about 4 m. The geoid to the
east of the rise still falls off with distance, as it did before the age-correction was applied,
but the slope is more gradual in the residual profile. The age-corrected bathymetry (Figure
4.10g) is marked by a large negative residual with a width of about 700 km at the rise
axis, indicating that the rise is 400 m deeper than predicted by the plate cooling model.
Positive depth anomalies of approximately 200 m are found on the cast and west flanks of
the rise axis. This steep residual at the rise axis is produced using either the Parsons and
Sclater [1977] or the Schroeder [1984] depth-age relation and was also found by Menard
and Dorman [1977). The age-corrected travel time residual profile slopes monotonically
from west to east, with a full range of 6 s. A short-wavelength residual low at the rise is
also present in this profile and in the high order geoid profile (Figure 4. 10i) but is not
readily apparent in the lower order geoid profiles in Figures 4. 10e and 4.10f.

Profile 2, across the Galapagos Spreading Center
Profile 2, approximately orthogonal to the Galapagos Spreading Center, starts to the
south of the spreading center at 5°S, passes to the cast of the Galapagos hotspot at 1°S,
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and crosses the Galapagos Spreading Center at 1°N, 89°W. The profile continues north of
the spreading center onto the Cocos plate, stopping near the Middle America Trench at
8.7°N, 87.3°W. A comparison of the bathymetry for profiles 1 and 2 shows their very
different character. In profile 1, the area west of the rise increased gently up to the rise,
whereas in profile 2 bathymetry (Figure 4.11c) is much more variable and seems to be
strongly affected by the Galapagos hotspot and the Middle America Trench and less related
to simple plate cooling. Because Profile 2 crosses the most tectonically disturbed area, it
is expected to present the most difficulty for application of simple plate cooling models.
Once again, data on this profile are all of similar azimuth (approximately N20°W) so the
effects of azimuthal anisotropy on the shear wave travel time residuals can be neglected.
We observe a positive correlation between both the age-corrected residual depth (4.11g)
and travel time residual (Figure 4.11h) profiles. The geoid signal is dominated by a
monotonic increase from south to north of about 12 m (Figures 4.11b,e,f), a pattern
which is presumably at least partially related to the Middle America subduction zone.
Hager [1984] has suggested that the signal of subducting slabs is strong up to degree and
order 9. It is therefore worth examining the high-order geoid (Figure 4.11i) as we are
mainly interested in processes unrelated to subduction. The high-order geoid shows some
correlation with the bathymetry and travel time, mainly at long wavelengths and in the
vicinity of the Galapagos hotspot. The Galapagos Spreading Center appears in the middle
of a south-to-north, negatively sloping feature on the bathymetry, travel time, and high-
order geoid.

Profile 3, East Pacific Rise north of triple junction

Profile 3 stretches from 10°N, 131°W to 9°N, 86°W, crossing over the East Pacific
Rise at 9.5°N, 103.5°W. To the west of the rise the depth (Figure 4.12c) increases
gradually with age. The geoid (Figure 4.12b) rolls off steeply on the west side of the rise
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and increases slightly at a distance of about 1200 km from the rise axis. The SS-S travel
time residuals are low (comparatively early) at the rise axis, but in the region from 300 km
10 2500 km to the west of the rise, the residuals follow the predicted relation between age
and travel time residual. The data to the east of the rise are all located on the Cocos plate,
and, after initially decreasing with age to the east of the rise, increase significantly as the
coast of central America is approached. The depth anomaly (Figure 4.12g) west of the
East Pacific Rise is near zero and shows little deviation from the depth predicted by
Schroeder [1984]. The main feature in the age-corrected depth and travel time anomaly
profiles [Figures 4.12g and 4.12h] is the region of high values at the eastern end of the
profile. The geoid profiles [Figures 4.12¢, f, and i] are not well correlated with the travel
time and bathymetry.

Profile 4, East Pacific Rise north of triple junction

Profile 4 stretches WNW - ESE from 23°N, 127°W to 7°N, 83°W, crossing over the
East Pacific Rise at approximately 13.5°N, 104°W. As with the other E-W profiles
(profiles 1 and 3) the bathymetry (Figure 4.13¢) and travel time residuals (Figure 4.13d)
follow the predicted age dependence to the west of the rise, whereas the residual geoid
(Figure 4.13b) falls off more steeply than predicted to the west and then increases about
1300 km west of the rise axis. For this profile the travel time residuals are relatively large
(late) at the rise axis, as expected from plate cooling models, but contrary to observations
in the previous profiles. The travel time, geoid, and bathymetry all fall off steeply to the
east of the rise and then increase as the Central American coastline is approached. The
age-corrected residuals of Profile 4 do not differ markedly from those of Profile 3. The
fact that the travel time residuals (Figures 4.13d, h) increase at the eastern end of the
profile and then decrease sharply as the shallowest depths on the bathymetry profile are

reached might be partly due to an inaccurate bathymetric correction to the travel times.
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Inversion Experiments

Inversion experiments were conducted to assess whether the geoid, topography, and
travel ime anomalies presented in Profile 2 can be explained by reasonable variations in
temperature and/or composition in the upper mantle. Profile 2 was singled out for further
analysis in order to search for thermal and/or compositional variations related to the
Galapagos hotspot, and also because of the qualitative correlation between bathymetry and
travel time at a variety of wavelengths (700 - 1500 km). The geoid, admittedly, is
problematic in this region due to the signal from the Middle American subduction zone. A
total of 24 inversions were run, with various combinations of inversion parameters
(temperature and/or composition), the thickness of the layer in which temperatures or
composition were allowed to vary (0-150 km, 0-300 km, or 0-650 km), viscosity
structures (constant viscosity mantle or mantle with a shallow low-viscosity zone), and
geoid corrections. Results of the inversion experiments are summarized in Table 4.3 and
Figures 4.14-4.21.

We find that compositional variations alone (parameterized in terms of Mg#) are
inadequate to model simultaneously the geoid, travel time, and bathymetry observations.
Temperature variations alone provide reasonably good fits to the data, with variance
reductions ranging from 66% for the model with a low viscosity zone and temperatures
constrained to vary only over the depth range 0-300 km, to 72% for the model with a low
viscosity zone and temperature perturbations confined to the depth range 0-150 km. For
the latter model, the range of predicted temperature variations is high (x 150°C), so the
models with temperatures constrained to extend deeper are more reasonable, as they
predict smaller temperature variations and thus lesser differences in melt production and
crustal thickness. The most interesting feature in the Profile 2 inversions is the Galapagos

hotspot region, marked by slow SS-S travel times, shallow topography, and a slight geoid
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high. The other dominant feature in the profile is a long-wavelength southward slope,
especially strong in the geoid, which may be partially due to the Middle American
subduction zone. In an attempt to remove the slab signature, we also carried out
temperature inversions using the high-order geoid (reference field up to degree and order
10 removed). The high-order geoid is of much smaller amplitude than the low-order
geoid, and we had to adjust our data covariance matrix to ensure proper weighting
between the various data. The fits with the high-order geoid were worse than those with
the low-order geoid, as only a small temperature variation in the upper mantie was
required to fit the geoid but this variation was insufficient to match the observed travel time
residual and bathymetry. It may be worthwhile to remove the slab signal from the geoid

explicitly.

DISCUSSION

We found that the SS-S differential travel time is about 2 s larger in the Pacific ata
given seafloor age than in the north Adantic. The Pacific has been found to be seismically
slower at a given age than the Adantic (or Indian Ocean) in a number of studies [Stark and
Forsyth, 1983; Zhang and Tanimoto, 1990b; Woodward and Masters, 1991]. In addition,
heat flow in the Pacific is higher than in the Atlantic [Chapman and Pollack, 1975},
suggesting that there may be some differences in the thermal structure beneath these two
ridges or that there are differences in the fraction of heat flow carried by hydrothermal
circulation.

Observations of upper mantle anisotropy in the Pacific have been reported in many
surface wave studies [e.g., Forsyth, 1975; Schiue and Knopoff, 1977, Tanimoto and
Anderson, 1984, 1985; Cara and Leveque, 1988; Nishimura and Forsyth, 1988, 1989,
Montagner and Tanimoto, 1990, and the lithospheric portion of this signal has been
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attributed to the preferential alignment of olivine crystals with their a-axis parallel to the
fossil direction of plate motion. Nishimura and Forsyth [1989] and Cara and Leveque
[1988] have suggested that deep-seated (sub-lithospheric) anisotropy is related to the
direction of present shear rather than the fossil seafloor spreading direction. In general,
for fast-moving oceanic plates, the direction of horizontal shear in the underlying
asthenosphere is expected to be similar to that of absolute plate motion {Hager and
O'Connell, 1979].

Our study area encompasses a large range of absolute plate motions, as three plates
are involved. Not surprisingly, surface wave studies also show a range of anisotropy
patterns in the region. The study of Montagner and Tanimoto [1990] shows anisotropy in
the region with the fast axis for Rayleigh waves at N80O°E in the Cocos plate,
approximately east-west in the Nazca plate, and approximately N80°W in the very eastern
part of the Pacific Plate (within our study area). The absolute plate motion vectors from
Gripp and Gordon [1990] have azimuths of approximately N35°E for the Cocos plate,
NOOQ°E for the Nazca plate, and N75°W for the Pacific plate. Our azimuthal distribution of
data and corresponding 40 models are consistent with alignment of the olivine g axis at
either N45'W or N45°E. The olivine a axis direction is slow for SH incident at an angle
of 45° from the vertical (similar to the incidence angles of SS waves in this study), though
fast for horizontally propagating P. Since most of our bounce points lie on the Cocos
plate, it is not surprising that our results are most consistent with the absolute motion of
this plate.

Synthesizing the results on anisotropy from Chapter 2 and the east Pacific, there is
not a significant pattern of anisotropy in the slow spreading north Atlantic, but there may
be significant anisotropy in the faster spreading east Pacific. Travel time data at a better
distribution of azimuths on the Cocos plate would help us to distinguish between upper

mantle anisotropy and lateral heterogeneity as the mechanism of our observed azimuthal
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distribution in travel time residuals. McKenzie [1979] and Ribe [1989] have suggested
that anisotropy in both the lithosphere and the asthenosphere will not be as pronounced
beneath slow spreading ridges as at fast spreading ridges for several reasons. In the
lithosphere at slow spreading rates the crystals freeze in too quickly to be affected by
strains which at fast spreading rates can produce a preferred alignment. In the
asthenosphere, the lattice preferred orientation of olivine crystals is suggested to become
aligned with the flow direction when the flow is progressive simple shear, which is likely
to occur in the asthenosphere beneath a fast spreading ridge.

We have performed inversions of travel time, geoid, and bathymetry along a profile
orthogonal to the Galapagos Spreading Center and just to the east of the Galapagos
hotspot . The results of our inversions indicate that compositional variations alone are
inadequate to produce the observed variations in travel time, geoid, and bathymetry, but
that several different parameterizations of temperature variations produce generally good
fits to the data (variance reductions are approximately 70%, see Table 4.3). The predicted
excess temperature anomaly at the Galapagos hotspot ranges from 50° to 150°C. We also
observe a long wavelength signal attributed to the slab subducting along the Middle
America Trench. Our techniques have not been designed to deal with the strong lateral
viscosity contrasts that a slab would presumably produce. Further work is needed to
remove the slab signal from our geoid anomalies.

Several authors [Watts et al., 1985, Haxby and Weissel, 1986] have argued for the
presence of small scale convection in the central and eastern Pacific. Haxby and Weissel
[1986] observed linear gravity anomalies of wavelength 150 to 500 km oriented
orthogonal to the ridge. Their observations were from an area to the south and west of our
study area, so a direct comparison is not possible. They suggest that these anomalies
mark the locus of longitudinal convective rolls aligned by shear imparted by a fast moving
plate [Richter and Parsons, 1975]. A denser sampling of data along the axis of the East
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Pacific Rise might allow us to test this theory, but our present sampling is inadequate. In
addidon, even a 500-km-wavelength signal might be smaller than we can resolve with
teleseismic techniques. Stark and Forsyth [1983] found a periodic variation of 640-km
wavelength in shear wave travel time residuals in the Indian Ocean, and they used this

result to argue for the presence of linear convective rolls in the upper mantle in that region.

CONCLUSIONS

We have measured 600 SS-S differential travel times for paths in the East Pacific
Rise region. The SS-S travel time residuals are only weakly correlated with seafloor age.
The travel time - age correlation is stronger if rather than using the actual plate age we use
the age predicted by the depth of the seafloor at the SS bounce point.

We have examined the azimuthal distribution of the SS travel time residuals, and
although not conclusive, our results are consistent with the presence of anisotropy in our
study area. The sense of anisotropy is consistent with the fast axis of olivine oriented
approximately parallel to the absolute plate motion vector for the Cocos plate. Itis also
possible that lateral heterogeneity rather than azimuthal anisotropy is producing our
observed azimuthal pattern. Sampling at a more uniform distribution of azimuths should
make this result less ambiguous, and as more seismic stations are deployed at new
geographic locations our chances of resolving this issue improves.

We note several differences between the north Atlantic and the east Pacific. The
most obvious difference is that the Pacific travel time residuals are significantly larger than
those for the Atlantic, even at a fixed age. The travel time - age relation is weaker in the
Pacific, though this may be partially atrributable to the fact that we do not sample a large
range of plate ages in the Pacific. In the Atlantic our results are not consistent with the

presence of a simple pattern of azimuthal anisotropy, while in the Pacific our data are
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consistent with the presence of weak anisotropy in the upper mantle. It has been
suggested that anisotropy may be more pronounced at fast spreading rates than at slow
spreading rates duc to a rate-dependence of the mechanism for orienting olivine grains,
and our results are consistent with this suggestion. There is substantial ambiguity in our
Pacific anisotropy measurements, however, due to a poor sampling of azimuths.

We have applied a joint inversion of travel time residuals, geoid, and bathymetric
anomalies for lateral variation in upper mantle temperature and composition to a north-
south profile orthogonal to the Galapagos Spreading Center. We find that compositional
variations alone are inadequate to match all of the data simultaneously. Temperature
variations alone, however, significantly reduce the variance in all of the data. The models
predict excess temperature in the vicinity of the Galapagos hotspot in the range of 50° to
150°C. Further analysis is needed to remove the effects of slab structure and possible

crustal thickening in the east Cocos plate region.
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TABLE 4.1. Digital seismograph stations used.

Station
AFI

ALQ
ANMO
BOCO
CMB
oL
GAC
HON
JAS
JAS1
KIP
LON
RSCP
RSNT
RSNY
RSON
RSSD
SCP
SCZ
WFM
ZOBO

Network '

DWWSSN
DWWSSN
SRO

SRO
DWWSSN
DWWSSN
CAN
DWWSSN
DWWSSN
DWWSSN
GEOSCP
DWWSSN
RSTN
RSTN
RSTN
RSTN
RSTN
DWWSSN
GEOSCP
GEOSCP
ASRO

Latitude, °N

-13.910
34.942
34.946

4.587
38.035
64.900
45.70
21.322
37.947
37.947
21.420
46.750
35.600
62.480
44,548
50.859
44.120
40.795
36.600
42.610

-16.270

t Network abbreviations as in Table 2.1

Longitude, 'E

-171.977
-106.458
-106.457
-74.043
-120.385
-147.793
-75.47
-158.008
-120.438
-120.438
-158.022
-121.810
-85.569
-114.592
-74.530
-93.702
-104.036
-77.865
-121.400
-71.490
-68.125



TABLE 4.2 Earthquakes used in this study.

Year  Month Day How Min  Sec Depth,km my Lat,'N Long.,'E
1980 1 14 21 51 1.8 14 S6 3319 -69.46
1980 1 20 1 3 332 33 S0 2273 -11420
1980 1 24 19 0 95 11 53  37.85 -121.82
1980 1 27 16 38 1.1 10 57  -3538 -105.87
1980 1 28 16 59 229 33 53 449 -76.11
1980 2 14 14 7 16 45 53  3L77 -71.42
1980 3 29 6 41 505 33 56 4308 -75.20
1980 3 29 17 49 109 33 52 3793 .73.50
1980 4 9 8 17 551 10 55 -3165 -67.48
1980 4 9 19 s6 260 10 S5 4461 -80.10
1980 4 14 23 s7 276 100 54  -2129 -68.73
1980 5 2 19 9 78 163 54 2413 6694
1980 s 26 18 41 368 6 60 -1936 6929
1980 5 30 16 s6 222 33 S3 2311 -7093
1980 6 9 3 28 189 5 56 3222 -11499
1980 6 11 14 21 189 35 55  -372 -7L65
1980 6 16 5 4 69 8 55 2203 -6847
1980 7 13 6 20 303 103 56 3347 -70.15
1980 8 3 3 0 497 151 53 3525 6999
1980 8 3 13 42 354 10 51  -3558 -104.63
1980 9 2 2 18 416 10 50 -2679 -112.92
1980 9 26 20 2% 348 10 49  -3590 -102.94
1980 1 8 21 35 431 103 5S4 2434 -67.65
1980 12 1 18 15 35 8 61 2127 -68.15
1980 12 20 20 2% 472 ST1 S22 2437 6342
1981 1 7 16 2% 425 31 55 2375 -70.62
1981 . 1 7 20 31 121 10 51  -4991 -114.14
1981 3 2 21 19 560 246 5.1 2264 6599
1981 3 23 19 22 107 46 58  -3366 -71.89
1981 3 26 18 4 447 138 S8  -1937 6896
1981 4 1 18 3 365 554 59 2731 6332
1981 4 6 14 34 13 88 S3  -3537 -71.05
1981 4 16 2 s 530 33 S1 2016 -70.70
1981 5 17 17 4 580 33 54 27122 -T183
1981 5 24 11 44 3.5 10 52  -22.16 -11420
1981 6 1 19 50 133 33 S50 2049 -65.19
1981 6 4 7 39 404 33 S1 3420 -78.83
1981 6 10 4 6 102 10 48  -3580 -102.17
1981 6 16 5 41 491 %6 54 2149 6834
1981 6 21 10 30 1.1 % 52 2026 -7045
1981 6 22 17 53 213 24 S1 0 -1317 7452
1981 7 10 18 2 49 10 52 -3722 -95.37
1981 7 18 11 1S 181 246 50  -2268 -66.24
1981 7 28 3 3 216 43 55 4157 -73.20
1981 8 17 2 18 599 37 55 1452 -93.77
1981 8 21 2 s2 406 10 S1 2651 -114.76
1981 8 2 23 47 414 10 52 -3583 -103.30
1981 9 6 16 43 199 10 54  -36.17 -100.70
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1983 7 21 7 11 33.1 127 5.5 -2230 -68.53
1983 7 22 2 39 55.3 7 6.0 36.22 -120.40
1983 7 3 10 26 0.2 10 6.0 -20.14 -126.87
1983 8 20 8 30 34.1 10 5.3 -36.25 -101.54
1983 8 21 18 58 19.2 10 5.4 -28.78 -112.65
1983 8 3 8 50 37.2 10 53 -29.57 -111.84
1983 9 1 20 1 46.7 110 59 -17.58 -69.98
1983 9 9 16 30 554 9 54 19.33 -155.12
1983 9 14 0 47 4.7 37 5.4 -3642 -73.08
1983 9 21 10 27 56.7 112 53 -1898 -69.12
1983 9 A 15 51 577 10 5.5 4185 -83.61
1983 10 4 18 52 129 18 6.4 -2662 -70.77
1983 10 6 15 1 48.4 20 5.5 -26.72  -7091
1983 10 9 il 25 422 33 59 2626 -70.59
1983 10 12 3 39 39.0 2 5.7 8.06 -82.72
1983 10 16 9 59 458 66 57 -23.84 -70.21
1983 10 21 8 14 18.2 117 5.5 -30.64 -69.11
1983 10 24 0 36 6.7 55 5.6 -1296 -76.75
1983 11 9 1 57 50.3 10 54 -36.13 -100.04
1983 11 16 16 13 0.0 11 6.3 19.43 -155.45
1983 11 17 10 39 309 575 54 2820 -63.22
1983 11 22 14 20 58.8 23 6.3 042 -79.94
1983 11 23 8 12 15.0 54 5.1 -15.09 -75.55
1983 11 25 9 23 278 33 53 24.25 -108.80
1983 11 26 20 18 235 10 5.6 7.38 -82.26
1983 11 26 23 29 8.9 10 5.3 4437 -80.15
1983 11 28 19 10 7.0 19 5.6 4495 -76.01
1983 11 29 2 55 15.7 10 48 49.75 -114.54
1983 12 2 3 9 5.6 69 5.9 1405 -91.94
1983 12 21 12 5 6.0 604 6.3 -2823 -63.20
1983 12 23 2 56 6.9 33 5.3 2754 -71.46
1984 1 1 2 8 10.2 28 54 2261 -66.02
1984 1 6 15 1 34.6 103 5.4 2392  -68.65
1984 1 16 12 27 13.8 10 59 -30.00 -112.29
1984 1 26 19 30 57.3 58 5.3 -1235  -76.93
1984 2 k! 8 29 471 33 5.7 2946 -71.13
1984 2 9 4 31 18.5 41 54 -14.16 -76.23
1984 3 1 19 21 246 10 5.5 -4.65 -106.05
1984 3 4 p2 34 240 33 5.4 -26.55 -70.70
1984 3 11 13 42 56.5 10 5.7 -26.64 -108.41
1984 4 13 5 54 52.1 10 4.8 2490 -112.11
1984 4 19 8 28 53.0 31 5.5 -31.80 -71.90
1984 5 7 14 9 13.3 137 5.6 2782 -66.64
1984 b} 9 23 56 9.5 119 5.6 -34.14  -70.27
1984 5 10 9 51 23 10 5.1 -3625 -98.75
1984 5 16 3 44 56.4 139 54 27.17  -67.04
1984 5 25 13 20 239 3 5.5 4262 -75.13
1984 6 11 2 5 338 45 6.2 23072 -71.21
1984 6 18 11 20 18.2 121 58 -15.73  -72.48
1984 6 20 19 56 428 160 54 2398 -66.97
1984 7 2 4 50 42.6 35 58 16.76 -98.51
1984 7 24 4 49 45.3 34 5.6 -25.79 -70.52
1984 7 30 21 32 59.7 ™ 5.0 13.34  -90.07
1984 8 12 11 51 409 101 5.6 2436 -69.25
1984 8 26 S 2 79 16 5.4 1591 -95.30
1984 8 28 10 4 24.6 10 53 -4.53 -105.87
1984 8 31 19 46 3.9 119 53 16.10 -93.34
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1984 9 5 2 27 54.3 10 55 -25.51 -116.06
1984 9 6 20 M4 25.8 10 5.0 30.65 -113.93
1984 9 12 21 56 28.2 10 5.0 19.88 -116.02
1984 9 28 10 40 24.1 10 6.0 31.63 -110.89
1984 10 10 5 43 51.0 10 5.1 -4.59 -105.51
1984 10 13 17 18 14.2 31 6.1 1506 -94.24
1984 11 8 6 32 55.9 42 5.3 -30.67 -71.36
1984 12 10 10 22 4.8 56 5.4 -1486 -75.33
1984 12 11 23 22 20.6 122 5.6 -22.84 -68.80
1984 12 31 13 0 318 174 5.5 -23.06 -66.91
1985 1 18 15 0 8.3 82 5.8 -2941 -70.71
1985 1 26 3 7 25 38 6.1 -33.15  -68.54
1985 2 14 8 30 55.6 123 5.6 -2385 -67.75
1985 2 21 18 53 8.5 33 4.7 -33.28 -71.72
1985 2 21 21 52 56.5 33 53 -20.72  -70.37
1985 2 A 2 7 312 10 5.1 -3225 -110.95
1985 3 3 2 47 6.9 33 6.9 -33.15  -71.98
1985 3 4 0 32 214 33 6.0 -33.23  -71.76
1985 3 4 6 6 57.8 33 54 -33.58 -71.86
1985 3 4 13 49 29.6 33 4.9 -3395 -71.96
1985 3 4 15 1 6.2 33 6.1 -33.84  -71.32
1985 3 4 19 3 7.2 33 5.3 -32.75  -71.60
1985 3 b} 9 8 54.6 33 54 3424 7172
1985 3 7 0 54 56.9 33 5.5 -33.01 -72.14
1985 3 12 8 23 15.3 KX) 5.3 -33.10 -72.16
1985 3 17 10 41 37.9 33 59 -32.66 -71.56
1985 3 19 4 1 6.5 33 59 -33.28 -71.76
1985 3 23 13 45 19.3 33 54 -3428 -72.11
1985 3 23 14 36 57.0 33 5.6 -33.30 -72.22
1985 3 A 16 16 33.0 33 5.4 23435 7213
1985 3 25 5 14 332 33 6.1 -3434 7228
1985 3 30 13 47 28.7 33 5.0 4546 -76.40
1985 4 3 13 6 19.8 33 57 -3262 -71.61
1985 4 9 1 56 58.6 33 6.3 -34.17 -71.54
1985 4 15 4 41 50.5 33 5.0 -33.53  -72.02
1985 4 19 17 43 10.3 66 53 1193 -86.56
1985 4 28 2 53 44.1 60 5.0 -33.07 -71.49
1985 4 28 8 30 32,6 KX 6.0 -39.70 -75.61
1985 5 4 12 47 10.5 10 4.7 16.66 -113.53
1985 5 6 7 33 58.7 10 5.1 -36.37 -98.86
1985 5 17 2 44 7.8 33 5.1 -3428 -72.46
1985 5 18 16 59 13.3 111 54 -19.20 -69.12
1985 5 19 7 7 46.2 33 5.2 -33.88 -72.30
1985 5 19 18 9 154 39 59 -3024  -71.28
1985 6 2 16 26 58.0 33 54 -37.80 -73.59
1985 6 3 2 45 32.1 70 5.1 13.13  -90.18
1985 6 9 18 46 30.1 33 5.0 -3325 -71.97
1985 6 10 15 37 33 180 58 -28.11  -67.19
1985 6 11 11 12 28.8 33 5.1 -3248 -71.68
1985 6 14 13 14 149 33 55 40.74 -74.92
1985 6 23 6 55 23.7 178 5.5 2406 -67.10
1985 7 5 15 22 38.1 33 5.0 -3338 -712.17
1985 7 6 8 33 7.1 43 5.1 -3336 -72.12
1985 7 7 11 25 12.0 32 54 -32.88 -72.00
1985 7 10 5 6 331 10 5.3 -3863 -91.65
1985 7 11 20 31 13.9 33 52 -3293  -72.00
1985 7 17 13 53 2.2 50 5.4 23265 -71.42
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1985 7 27 16 26 45.5 10 54 2694 -113.41
1985 8 4 4 54 1.9 3 55 4489 -75.45
1985 8 6 2 29 4.0 10 4.8 4125 -85.78
1985 8 12 0 4 50.9 33 5.5 -3842 -73.49
1985 8 19 7 53 48.0 33 53 -15.04 -75.60
1985 8 20 12 21 59 33 4.7 -33.78  -72.19
1985 8 21 11 26 28.8 61 6.1 -921 -7891
1985 8 27 10 44 34.6 197 5.2 2146 6745
1985 9 1 8 28 213 10 49 -39.02 -91.61
1985 9 19 13 17 478 33 7.0 18.18 -102.57
1985 9 21 1 37 13.8 33 6.3 17.82 -101.67
1985 10 8 9 47 219 22 5.5 -23.05 -66.43
1985 10 12 20 29 4.5 75 52 13.19 -89.63
1985 10 29 15 2 27.1 33 56 18.17 -102.55
1985 10 31 21 49 200 595 58 -28.75 -63.19
1985 11 12 3 34 19.8 10 54 -36.25 -98.02
1985 11 17 20 S0 50.9 10 5.1 -25.16 -112.33
1985 11 24 9 28 23.6 10 4.7 -7.69 -148.00
1985 11 27 15 59 26 10 9.9 -7190 -148.60
1985 11 29 4 2 11.3 521 53 -22.76  -63.62
1986 1 7 16 37 478 10 49 -13.34 -111.59
1986 1 12 14 0 55.4 10 5.0 -3597 -102.20
1986 1 26 7 48 229 30 5.7 2712 -70.87
1986 2 9 23 32 11.7 86 5.0 23613 -71.27
1986 2 20 9 16 24 33 57 21,15 -70.11
1986 3 22 16 56 50.9 10 53 -445 -104.82
1986 3 26 7 4 49.8 33 5.1 -34.10 -72.10
1986 4 9 18 10 529 199 5.2 -2296 -66.67
1986 4 30 14 9 39.7 116 5.5 -18.35 -69.70
1986 S 10 12 2 1.7 10 5.6 -37.04 -94.03
1986 6 5 9 1 15.6 10 5.2 -36.30 -97.37
1986 6 19 17 18 58.1 10 49 -36.12 -100.69
1986 6 24 23 53 32.6 10 4.7 -36.10 -100.47
1986 6 27 1 22 53.0 10 4.7 -19.30 -126.20
1986 6 30 pa) 52 12.0 62 52 1122 -86.09
1986 7 2 20 45 50.5 10 5.6 -26.72 -114.35
1986 7 13 13 47 8.0 5 5.6 33.02 -117.79
1986 7 18 0 21 38.7 10 4.9 -19.80 -126.50
1986 7 28 20 29 1.5 32 5.1 -33.38  -72.13
1986 8 1 14 9 249 10 5.5 -35.89 -103.75
1986 8 13 4 11 41.1 10 54 584 -8240
1986 8 21 17 1 28.5 10 5.0 -890 -109.47
1986 9 25 6 15 537 10 53 22.90 -108.07
1986 10 5 7 21 375 10 5.3 -23.72 -112.03
1986 10 5 13 15 45.6 10 54 -23.62 -112.02
1986 10 24 2 42 50.9 50 54 -2541  -70.15
1986 11 23 1 39 259 126 64 336 -77.47
1986 11 28 20 34 52.5 33 4.6 45.12  -76.67
1986 12 5 1 45 374 10 5.2 -3627 -91.53
1987 1 4 17 52 36.6 10 5.5 592 -82.67
1987 1 14 9 38 56.7 10 5.1 4992 -113.59
1987 2 14 15 44 15.9 10 54 4571  -75.99
1987 2 25 10 42 45.5 171 5.1 2794 -67.06
1987 3 5 9 17 0.0 27 6.5 2449  -70.17
1987 3 6 1 54 50.7 14 6.1 0.13 -77.67
1987 3 6 4 10 419 12 6.5 0.15 -77.83
1987 3 14 20 18 37.6 10 5.4 -38.89 -92.19
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1988 1 19 7 30 29.7 21 6.3 -24.75  -70.60
1988 2 5 14 1 2.2 13 6.2 -24.77  -70.37
1988 2 6 18 3 536 285 6.0 -18.04 -66.96
1988 2 22 19 13 17.4 n 59 2093 -69.80
1988 3 28 18 36 26.4 10 5.7 -36.03 -102.81
1988 3 30 23 50 56.2 kY 5.8 -2491  -7041
1988 4 12 23 19 57.3 4 6.1 -17.32  -72.40
1988 5 5 10 4 13.5 10 6.1 2691 -113.39
1988 b1 5 2 32 48.1 10 5.5 -26.76 -113.70
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TABLE 4.3. Inversion Models and Variance Reduction

Model: Temperature variations only Variance reduction, %
Layer Viscosity _
0-150 km cvm 415K 71 57 72 76-
0-150 km vz 560 K 72 59 51 92
0-300 km cvmm 175K 69 55 75 70
0-300 km lvz 285K 66 63 28 96
0-650 km cvm 85K 70 47 76 74
0-650 km Ivz 155K 70 54 46 93
Model: Compositional variations only Variance reduction, %
I',aycr Viscosity .
0-150 km ovm 1.7 35 50 %0 12
0-150 km Ivz 2.7 23 69 52 -15
0-300 km cvm 0.7 37 44 9s -9
0-300 km Ivz 2.0 23 23 44 7
0-650 km cvm 0.3 37 34 96 -6
0-650 km vz 1.8 35 -6 69 25

Model: Thermal and compositional variations in same layer Variance reduction, %

Layer Viscosity AT AMg#
0-150 km cvm 525K 1.9 89 57 50 100
0-150 km lvz 555K 1.9 81 78 58 100
0-300 km cvin 275K 1.1 89 51 94 100
0-300 km lvz 290K 1.9 75 87 37 100
0-650 km cvm 140K 0.6 89 43 95 100
0-650 km lvz 160 K 1.5 84 72 69 100

Model: Temperature variations only, high-order geoid Variance reduction, %

Layer Viscosity
hich \T | bat id_ SS-S
0-150 km cvin 80K 30 18 62 27
0-150 km vz 275K 47 52 5 67
0-300 km cvim 35K 29 12 78 22
0-300 km vz 195K 43 59 -10 55
0-650 km cvm 20K 30 10 83 26
0-650 km Ivz 80K 23 31 -46 56

cvmn = constant viscosity mantle
lvz = mantle with low viscosity zone



Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure Captions

Location map of the East Pacific Rise, after Macdonald [1989]. Spreading
centers, transform faults, propagating rifts, and overlapping spreading

centers are shown.

Distribution of earthquakes (triangles) and scismograph stations (circles)
used to measure SS-S differential travel times. Stations are from the GDSN
and GEOSCOPE digital arrays. Earthquakes are from the Harvard CMT
catalogue (generally mp > 5.0) from the years 1980-1988, and from a listing
of intraplate events from the years 1980-1987 (E. A. Bergman, personal
communication, 1991). Plate boundaries are from DeMets et al. [1990].
Lambert equal area projection with pole of projection at 5°N, -1 10°W.

Bathymetric map of East Pacific Rise and Cocos plate region, from
DBDBSC [U.S. Naval Oceanographic Office, 1985]. Contour interval

1000 m. Straight lines show location of profiles examined in this study.

Residual geoid map for East Pacific Rise and Cocos plate region, derived
from gridded altimetric data of Marsh et al. [1986] with the low order (to
degree and order 7, tapered to degree and order 11) portion of GEM-T2
reference field [Marsh et al., 1990) removed. Contour interval 2 m.

Straight lines show location of profiles examined in this study.

Map view of SS-S residuals relative to PREM ([Dziewonski and Anderson,
1981], corrected for Earth ellipticity and seafloor bathymetry. Residuals are
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Figure 4.6.

Figure 4.7.

plotted at the SS bounce point. The size of each symbol scales linearly with
the magnitude of the residual. A mean of +4.15 s has been removed from
the data for plotting purposes. Negative residuals indicate early SS (or late
S). Plate boundaries are from DeMets et al. [1990]. Mercator projection.

(a) SS-S travel time residual versus square root of seafloor age. Each
plotted point represeats the weighted mean of 25 adjacent data points.
Horizontal and vertical bars are standard errors of the means of the travel
time residuals and (age)!/2. Linear regression yields a slope of -0.01 +
0.08 s/ (My)1”2 for a 0- 50 My age range (solid line). Age dependence of
travel time residual predicted by the plate cooling model is shown as a
dashed line.

(b) SS-S travel time residual versus the square root of the age predicted by
the plate cooling model [Parsons and Sclater, 1977] for the given depth.
Each plotted point represents the weighted mean of 25 adjacent data points.
Linear regression yields a slope of -0.26 £ 0.04 s/ My)1/2 for a 0-33 My
age range (solid line). Age dependence of travel time residual predicted by
the plate cooling model is shown as a dashed line.

(a) SS-S residual versus azimuth 8. Each plotted point represents the
weighted mean of 25 adjacent data points. The solid curve shows the best-
fitting 40 variation derived from these data.

(b) Age-corrected SS-S residual (see text) versus azimuth 6. Each plotted
point represents the weighted mean of 25 adjacent data points. The solid

curve shows the best-fitting 40 variation derived from these data.



Figure 4.8.

Figure 4.9.

Figure 4.10.

Figure 4.11.
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Map view of sampling azimuths. Lines indicate the wave path azimuth at

the SS bounce point. Mercator projection.

Map view of age-corrected SS-S residuals. Residuals are plotted at the SS
bounce point. The size of each symbol scales linearly with magnitude of the
residual.

Profile 1 across the East Pacific Rise south of the Pacific-Cocos-Nazca
triple junction. (a) Seafloor age at SS bounce points. Data corresponding
to SS bounce points of “A™ and “B” quality are designated by crosses. “C”
quality data are designated by small dots. The rise axis is marked by a
straight line. (b) Bathymetry at SS bounce points (see Figure 4.3). (c)
Residual geoid at SS bounce points (see Figure 4.4). (d) SS-S travel time
residuals. (e) Age corrected geoid, using the method of Hager (1983]. (©)
Age corrected geoid, using the method of Parsons and Richter [1980] (g)
Age corrected bathymetry, using the method of Parsons and Sclater [1977].
(h) Age corrected SS-S wravel time residuals (see text). (i) High-order
portion of the geoid (GEM-T2 reference field to degree and order 10
removed). No age correction applied. The residuals shown in b - i are
weighted moving averages (such that cach point is used twice) of 4 adjacent

data points.

Profile 2, across the Galapagos Spreading Center. See Figure 4.10 for
explanation. Location nearest present Galapagos hotspot marked with an

asterisk.
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Figure 4.12. Profile 3 across the East Pacific Rise north of the Pacific-Cocos-Nazca triple

junction. See Figure 4.10 for explanation.

Figure 4.13. Profile 4 across the East Pacific Rise north of the Pacific-Cocos-Nazca triple

junction. See Figure 4.10 for explanation.

Figure 4.14. Results of combined inversion of geoid, bathymetry, and SS-S travel time
residuals for upper mantle temperature variations along Profile 2. The
viscosity structure is taken to consist of a 40-km-thick high-viscosity lid
overlying a constant-viscosity halfspace. Location nearest Galapagos
hotspot marked with an asterisk.

(a) Three solutions for lateral temperature variations: Dotted line:
Temperature perturbations constrained to be uniform over 0-150 km depth.
Long-dashed line: Temperature perturbations constrained to be uniform
over 0-300 km depth. Short-dashed line: Temperature perturbations
constrained to be uniform over 0-650 km depth.

(b) Observed (solid line) and predicted profiles of SS-S travel time residual.
The “observed” profile is actually a filtered version of the observations,
containing only the wavelengths used in the inversion (850 to 5000 km).
Line types correspond to those of the temperature models.

(c) Observed and predicted geoid profiles. Same treatment as in (b).

(d) Observed and predicted bathymetry profiles. Same treatment as in (b).

Figure 4.15. Results of combined inversion of geoid, bathymetry, and SS-S travel time
residuals for upper mantle temperature variations along Profile 2. The

viscosity structure includes a zone extending from the base of the high-



Figure 4.16.

Figure 4.17.

Figure 4.18.
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viscosity lid to a depth of 200 km with a viscosity equal to 0.01 that of the
underlying mantle. Other aspects as in Figure 4.14.

Results of combined inversion of geoid, bathymetry, and SS-S travel time
residuals for variations in upper mantle composition (Mg#). The viscosity
structure is taken to consist of a 40-km-thick high-viscosity lid overlying a
constant-viscosity halfspace.

(a) Three solutions for lateral composition variations: Dotted line:
Composition perturbations constrained to be uniform over 0-150 km depth.
Long-dashed line: Composition perturbations constrained to be uniform
over 0-300 km depth. Short-dashed line: Composition perturbations
constrained to be uniform over 0-650 km depth.

(b) Observed (solid line) and predicted profiles of SS-S travel time residual.
(c) Observed and predicted geoid profiles.

(d) Observed and predicted bathymetry profiles.

Results of combined inversion of geoid, bathymetry, and SS-S travel time
residuals for variations in upper mantle composition (Mg#). The viscosity
structure includes a zone extending from the base of the high-viscosity lid to
a depth of 200 km with a viscosity equal to 0.01 that of the underlying
mantle. Other aspects as in Figure 4.16.

Results of combined inversion of geoid, bathymetry, and SS-S travel time
residuals for both upper mantle temperature and composition variations.
The viscosity structure is taken to consist of a 40-km-thick high-viscosity

lid overlying a constant-viscosity halfspace.
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Figure 4.19.

Figure 4.20.

(a) Three solutions for lateral temperature variations: Dotted line:
Composition perturbations constrained to be uniform over 0-150 km depth.
Long-dashed line: Composition perturbations constrained to be uniform
over 0-300 km depth. Short-dashed line: Composition perturbations
constrained to be uniform over 0-650 km depth.

(b) Three solutions for lateral composition variations: Dotted line:
Composition perturbations constrained to be uniform over 0-150 km depth.
Long-dashed line: Composition perturbations constrained to be uniform
over 0-300 km depth. Short-dashed line: Composition perturbations
constrained to be uniform over 0-650 km depth.

(c) Observed (solid line) and predicted profiles of SS-S travel time residual.
(d) Observed and predicted geoid profiles.

(e) Observed and predicted bathymetry profiles.

Results of combined inversion of geoid, bathymetry, and SS-S travel time
residuals for both upper mantle temperature and composition variations.
The viscosity structure includes a zone extending from the base of the high-
viscosity lid to a depth of 200 km with a viscosity equal to 0.01 that of the
underlying mantle. Other aspects as in Figure 4.18.

Results of combined inversion of high-order geoid (see Figure 4.101),
bathymetry, and SS-S travel time residuals for upper mantle temperature
variations along Profile 2. The viscosity structure is taken to consist of a
40-km-thick high-viscosity lid overlying a constant-viscosity halfspace.
Other aspects as in Figure 4.14.



Figure 4.21.
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Results of combined inversion of high-order geoid (see Figure 4.10i),
bathymetry, and SS-S travel time residuals for upper mantle temperature
variations along Profile 2. The viscosity structure includes a zone extending
from the base of the high-viscosity lid to a depth of 200 km with a viscosity
equal to 0.01 that of the underlying mantle. Other aspects as in Figure
4.15.
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PROFILE 2. Temperuture inversion/CVZ
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PROFILE 2, Temperature inversion/LVZ
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PROFILE 2, Composition imversion/CVZ
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PROFILE 2. Tempercture inversion/CVZ H
AT 0~180 km

88-8, »

b

. km

-1.0

-1.8




200

PROFILE 2, Temperctae inversion/LVZ HI
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Chapter §

Conclusions

In this thesis we have examined lateral heterogeneity in the lithosphere and
asthenosphere beneath oceanic regions through a combined analysis of seismic body
wave differential travel times and attenuation, geoid anomalies, and residual depth
anomalies. Our focus has been to assess variations at the 1000 km scale, comparable to
the thickness of the upper mantle. We have examined the data to determine whether
convection on this scale can produce observable temperature and compositional
anomalies. We have developed an inversion technique which allows shear wave travel
time, geoid, and bathymetry data to be combined and jointly inverted for lateral variations
in upper mantle temperature and composition structure, and we have applied it to data sets

from both the north Atlantic and east Pacific.

Several general conclusions can be drawn from our study of S-S differential travel
times. In the Atlantic, the SS-S travel time residual decreases linearly with square root of
age, in general agreement with the plate cooling model to an age of 80-100 My [Parsons
and Sclater, 1977). In the Pacific, SS-S travel time residuals are only weakly correlated
with seafloor age, although this may be partially atrributable to the fact that we do not
sample a large range of plate ages in the Pacific. The travel time - age correlation in the

Pacific is stronger if rather than using the actual plate age we use the age predicted by the
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depth of the seafloor at the SS bounce point, in the same sense as that predicted by the
lithospheric rejuvenation hypothesis [Menard and McNust, 1982]. The Pacific travel time
residuals are significantly larger than the Atantic data, even at a fixed age.

Azimuthal anisotropy is not clearly resolved in the Adantic but may be present in the
cast Pacific. Although not conclusive, our east Pacific data are consistent with the
presence of anisotropy, with the fast axis of olivine oriented approximately parallel to the
absolute plate motion vector for the Cocos plate. It has been suggested that anisotropy
may be more pronounced at fast spreading rates than at slow spreading rates both in the
lithosphere (due to rate-dependence of the mechanism for orienting olivine crystals) and
in the asthenosphere (due to the flow regime), and our results are consistent with this
suggestion. There is substantial ambiguity in our Pacific anisotropy measurements,
however, due to a poor sampling of azimuths.

We have observed lateral variations in age-corrected SS-S residuals with a
dominant wavelength of 1000 to 2000 km. Comparable variations are also observed in
bathymetry and geoid height. We have formulated a joint inversion of geoid, travel time,
and bathymetry for lateral variations in temperature and composition as a means to assess
more quantitatively the observed correlations. In the north Atlantic, inversion for
temperature favors the presence of an upper mantle low viscosity zone and temperature
anomalies concentrated at depths less than 300 km. We are unable to match travel ume
residuals simultaneously with geoid and bathymetry solely with lateral variations in bulk
composition (Mg#). Joint inversions for temperature and composition provide good fits
to both travel time and and geoid regardless of viscosity structure or layer depth and
thickness, but the best fits to bathymetry come from models with a low-viscosity zone
and thermal or compositional variations confined to shallow depth. The variations in
Mg# predicted in the joint inversion for temperature and composition are comparable to
those found by Michael and Bonatti {1985] in a study of dredged peridotites along the



Mid-Adantic Ridge and may be related to variations in melt production along the ridge. In
the Pacific we applied the inversion techniques to a north-south profile orthogonal to the
Galapagos spreading center. In this region we also find that compositional variations
alone are inadequate to produce good fits to travel time and geoid and bathymetry
simultaneously. Temperature variations alone, however, produce significant variance
reduction. The models predict excess temperature in the vicinity of the Galapagos hotspot
in the range 50 to 150 K.

As a complement to the travel time studies, we also measured SS-S differential
attenuation in the north Atlantic region. As with the travel time residuals, we find that ot*
decreases with increasing seafloor agé. We do not observe evidence for a narrow region
of very low Q lying beneath the Mid-Atlantic Ridge as reported by Solomon [1973],
although this may be due to the limited spatial resolution of the long-period shear waves
utilized in our study. We derive empirical Ql-temperature relations by predicting St*asa
function of lithospheric age by means of the plate cooling model {Parsons and Sclater,
1977]. We find that our 8t* variations versus age are well fit with a simple Q-temperature
relation, but the relation generally predicts smaller variations in Q1 for a given
temperature change than the laboratory-derived Q-temperature relation of Sato and Sacks
[1989]. Along-axis 5t* profiles are constructed by combining the temperature variations
along the axis of the Mid-Atlantic Ridge derived in Chapter 2 and the empirical Q-
temperature relation derived for the lithosphere.

The techniques developed in this thesis should be of general utility for both global
and regional studies of the upper mantle. The Hawaiian hotspot would be an interesting
new area in which to apply these inversion techniques. Mid-plate swells have been
hypothesized to result from several effects, including elevated temperature in the
convecting mantle [Sandwell and Poehls, 1980}, thermal expansion within the conducting
portion of the lithosphere [Crough, 1978; Detrick and Crough, 1978; Menard and
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McNust, 1982], and underplating of the lithosphere with depleted mantle material
[Jordan, 1979). Each of these processes involves a different source of the anomaly
causing the swell, and each predicts a correspondingly different geophysical signature.
The methods proposed here, which distinguish between thermal and compositional
mechanisms, offer great promise for distinguishing between these competing models.
Woodward and Masters [1991), for instance, have observed negative SS-S travel time
residuals with SS bounce points in the vicinity of the Hawaiian swell, a result which
would favor a lateral variation in composition in the upper mantle beneath the swell.

Application of these techniques and measurements to a global travel time data set
will allow general constraints to be placed on upper mantle viscosity structure, the
presence of partial melt, and the mechanism of lateral heterogeneity. The viscosity
structure of the mantle is poorly known yet plays a key role in models of mantle
convection. The viscosity structures we employ in this thesis are quite simple but have
been chosen to represent two models widely invoked in other studies - a constant or
nearly constant viscosity mantle [e.g., Peltier, 1989] and a mantle with a thin low
viscosity layer [e.g., Craig and McKenzie, 1986; Robinson et al., 1987). The viscosity
structure of the Earth may be temperature and pressure-dependent or vary laterally, but
we have not considered viscosity structures of this type [e.g., Revenaugh and Parsons,
1987]. Much work remains to be done to determine ways to incorporate lateral variations
in viscosity into quantitative treatments of these problems.

Several other improvements could be made in future studies of the type presented
here. Our models thus far have been limited to simply parameterized one-dimensional
variations in temperature and composition within a single layer. It is likely that these
lateral variations are not constant within a given layer and that there are two-dimensional
lateral variations independent of lithospheric aging. The techniques outlined in this thesis
can be generalized to a multilayer system and to two-dimensional wavenumber, although
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we feel that an areally denser distribution of seismic data would be necessary to justify
these more complicated models. Kernels for seismic surface waves are strongly peaked
in the upper mantle, and such data would provide a uscful constraint independent of
differential body wave travel times. The inclusion of surface wave data would help to
distinguish between lithospheric and asthenospheric effects and may allow for two or
more layers to be independently resolved. Extension of the modelling to three
dimensions would permit an assessment of the degree to which mantle anomalies beneath
the ridge extend off axis. Implicit in our age-correction is the assumption that the
anomalous properties of the ridge mantle are steady state on a time scale of tens of
millions of years. Examination of the cross-axis profiles in the cast Pacific suggests that
this assumption might not always hold.

We have not modelled the effects of partial melting which could accompany the
tcmpdaturc variations we predict. The effect of retained melt on the physical properties
of the mantle depends critically on the melt fraction and geometry, characteristics
presently poorly known. Sato et al. [1988, 1989] downplay the importance of partial
melt and suggest that most mantle seismic velocity anomalies can be explained by
tempcramrt.: variations at subsolidus conditions. Our attenuation measurements can also
be explained with a thermal mechanism. Combined analysis of compressional as well as
shear wave differential travel times and attenuation may help to resolve whether
significant partial melting is required to explain the travel time residuals in the oceanic
upper mantle.

Further analysis of the East Pacific Rise data set is warranted to refine the
conclusions from that study. We hope to improve our azimuthal distribution of data by
obtaining seismograms from new stations which have begun operating only recently.
Since we have gathered data only through 1987, there is currently considerable data to

which we have not yet obtained access. Sampling at a more uniform distribution of
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azimuths should make our conclusions regarding anisotropy in the region less
ambiguous, and as more scismic stations are deployed at new locations our chances of
resolving this issue improves. Additional data would also be of use in extending the
analysis of age dependence to older lithosphere, and would be of use in attempts to assess
further why the upper mantle in the east Pacific region is slower than in the north Atlandc.

The data from the Cocos plate show interesting small-scale ( A from 800 to 1200
km) patterns which might be best examined in two dimensions. We may find it necessary
to refine the numerical techniques for obtaining kernels at the smaller wavelengths,
however, as we employ a predictor-corrector algorithm which becomes unstable when the
derivative of the kernels approaches zero (as is the case for geoid kernels at short
wavelength for a mantle with a thin low viscosity zone).

Other complicating factors for the East Pacific Rise study include the effect of the
subduction zone along the Middle America Trench and possible crustal thickness
variations in the eastern Cocos plate. Crustal thickness variations can be removed from
the bathymetry and the geoid by simple isostatic mass balance, and from the travel time
residuals by calculating the additional delay due to excess crust relative to an equivalent
thickness of mantle. The predicted slab effect can presumably be removed from the low-
order geoid in the manner of Hager [1984]. The effect of the slab on the differential
travel times is more difficult to assess.

An attenuation study in the east Pacific would be a natural extension of this
work, as the relevant seismograms have already been collected for the travel time study in
Chapter 4. From their study of Rayleigh wave phase propagation, Canas and Miichell
[1981] found that the east Pacific region has lower Q than the Atlantic. An analysis of
body wave differential attenuation, with horizontal resolution superior to that achievable
with surface waves, would constitute an interesting complement to our travel time

analysis. In another study Schiue [1981) examined differential attenuation between the S
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and SS phases with SS bounce points in a small area close to our Profile 1 of Chapter 4.
The results of the Schiue [1981] suggested that Q! does not decrease with age, at least in
the small range of plate ages (0-15 My) that were included in his study.

In conclusion, we feel that the procedures developed in this thesis represent an
important first step towards the discrimination of the global extent and mechanism of
lateral heterogeneity in the upper mantle on a regional (1000 to 4000 km) scale.
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Appendix II. SS-S Relative Attenuation (5t*) Values for the North Atlantic Region

EBEEEEEX

Origin time

r Mo
6
7
10
10
10

11
12

ook

Da
25
26
10
10
13

13
13
13
13
21
30
22

Hr Mn Sec
12: 4:56.9
12:53:40.7
12:25:23.5
15:39: 9.8
6:37:39.2
17:35:39.1
13:32: 5.9
23:16:54.1
21:10:57.7
2:58:11.2
4:31: 2.7
19:24: 5.6
14:54:29.6
14: 9:50.4
2:35:11.0
19:56:53.7
9:47: 44
7:12:44.5
1:25:56.8
8:41:50.5
8:41:50.5
5:35:47.3
15:40:13.3
12:41:29.3

2:54:18.6
15:43:52.6
15:43:52.6
13: 6:38.2
13: 6:38.2
23:27:33.2
23:27:33.2
20:34:49.1
4:12:27.7
14:20:58.8

352

Lo LA LA
OO &l

52

O\ Lh LA LA LA LA OV O\ LA
Wt e W WA WVWWEN

Epicenter

Lat
4.70
747
36.25
35.72
36.53

7.96
35.87

7.25
-0.07
44.86

8.45
24.22

8.25
-0.96
16.71
13.79

7.61
44,01
10.50
-1.13
-1.13
-1.03
46.25
38.13
38.13
38.13
38.13
38.13
37.88
37.88

Long
-75.35
-33.89

1.36
1.31
2.07
-72.64
1.68
-36.06
-18.59

17.33
-72.81
45.19
-38.25
-21.83
-61.47
-91.95
-35.81
-28.97
-62.56
-24.34
-24.34
-15.35
-27.54

Bouncepoint

Lat
34.43
3043
12.07
11.76
12.30
35.97
24.96
35.36
23.05
53.95
36.31
5156
36.09
2226
43.00
34.89
25.46
26.01
40.00
21.%4
21.88
25.27
15.92
53.20
69.42
60.68
75.88
51.23
53.22
51.27
51.50
52.70
51.02
51.51
37.69
41.19
35.38

9.52
29.78
4149
48.08
51.25
41.30
52.65
54.43
53.52
2243
27.65
30.35
32.38
55.59
59.74
24.75

Long
43.80
-16.33
-36.84
-36.72
-36.59
41.46
40.75
-21.04
-43.72
-32.31
-41.50
-27.27
-22.51
45.63
40.02
-54.55
£67.28
-55.33

3117

295.1
223.2

313.0
298.3
3146
208.3
278.5
310.1
285.6

267.5
278.8
267.8
280.7
282.0
271.1
267.0

38.5

38.7

52.3

62.3
39.0
30.8
267.6
59.0
280.1
275.3
265.6
3115
306.1
39.5
3153
2703
2704
56.8

=LA L DL R WO B R W 00 B e L) W
coxwmumrbhLo—~Lanoow

COWRW— WAL LA =W
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RSNY
RSNY

RSON
RSSD

RSNT

Origin time
Yr Mo Da Hr Mn Sec
83 12 22 4:11:293
83 12 22 4:11:29.3
84 2 11 8:2:50.0
84 2 26 8:18:16.6
84 3 20 17:19:64
84 3 30 7:59:53.6
84 4 22 6:14:21.7
84 S5 6 9:12:1.7
84 6 21 10:43:40.5
84 6 21 10:43:40.5
84 6 24 11:17:12.0
84 6 24 11:17:12.0
84 6 25 18:45:103
84 7 19 5:22:15.7
84 7 19 5:22:15.7
84 8 30 20:12:59.7
84 8 30 20:12:59.7
84 10 21 3:51:47.0
84 11 1 4:48:49.9
84 11 1 4:48:.499
84 11 5§ 4:17:329
84 12 5 13:39:23.6
84 12 8 12:24:419
84 12 8 12:24:419
84 12 8 12:24:419
84 12 20 23:31:18.0
85 1 10 17:47:56.1
85 1 10 17:47:56.1
85 3 16 14:54: 1.1
85 3 16 14:54: 1.1
85 3 16 14:54: 1.1
85 3 16 14:54: 1.1
85 4 20 18:23:48.2
85 6 4 12:6:3.6
85 6 S5 1:41:.423
8§ 6 6 2:40:12.8
85 6 10 3:23:31.8
8§ 6 26 17:10: 1.9
85 6 26 17:10: 19
8 7 1 9:53:36.1
8 7 1 9:53:36.1
85 7 22 21:32:27.9
85 9 22 18:23:12.2
85 9 23 17:2841.8
85 9 27 16:39:48.6
85 10 5 15:24:22
85 10 12 22:20:37.6
85 10 12 22:20:37.6
85 10 27 19:34:57.0
85 11 10 12:39:50.8
85 11 10 12:39:50.8
85 11 10 12:39:50.8
85 11 10 12:39:50.8
85 11 21 21:57:149
8§ 11 21 21:57:149

mb
6.4
6.4
53
59
5.1
58
58
50
57
5.7

Epicenter

Lat
12.02
12.02
38.11

-17.31
10.75
17.65
0.14
38.66
35.74
35.74
18.09

62. 53
0.99

41 49
41.49

Long
-13.64
-13.64

21.86
-70.65
41.96
-59.84
-19.59

25.57

23.80

23.80
-69.23
-69.23
-69.35
-12.48
-12.48
-33.72
-33.72
-12.38
-38.82
-38.82
-13.79

-26.48

28.40
4447
-13.75

-123 93
-29.15
-29.15

6.87
-31.96
-31.96
-31.96
-31.96

19.69

19.69

Dist
820
85.5
726
84.1
728
62.6
67.0
70.2
712
833
59.7
59.7
70.3
76.5
80.9
65.7
71.8
76.6
62.7
66.9
79.4
712
64.7
78.6
842
722
62.6
73.2
60.9
62.3
66.5
83.1
823
66.0
779
59.7
76.4
82.2
83.5
61.7
749
75.0
55.2
83.3
74.2
76.2
59.2
79.0
68.7
55.7
68.9
74.0
753
65.0
70.1

Bouncepoint

Lat
36.79
32.10
51.92
13.14
44.28
43.30
25.32
54.88
52.93
5115
32.61
33.26
40.98
22.44
32.53
3242
25.51
22.44
36.20
25.49
19.60
25.81
2221
29.44
27.32
25.42
37.93
44.50
35.86
38.29
39.16
38.60
37.59
2479
20.99
24.49
26.34
15.67
40.50
25.37
30.07

52.65°

34.01
15.24
52.15
75.73
22.69
22.49
55.92
26.73
31.23
29.06
40.02
54.67
70.79

Long
-50.04
-54.74
-26.67
41.69
-25.70
-38.72
42.14
-21.07
-20.70
-30.87
40.27
-40.56
-38.31
-37.87
-22.93
-56.39
-66.08
-37.81
-22.90
-69.04

-38.91
-38.31
46.29
-49.20
-55.49
65.83
-26.02
-26.91

-35.35
-36.30
33,77
-21.61
-44.56
41.76
-56.09
47.18
47.28
21.74
2272
46.34
-51.55
-17.70
63.46
-39.34
-18.39

4.81
49.92
63.27
-35.15
-49.69
-55.18
61.25
-17.80
-25.68
-18.08
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Origin time Epicenter Bouncepoint
Stn Ye Mo Da HrMnSec Dep mb Lat Long Dist Lat Long Azim &*
ANTO 85 12 23 19:37:54.8 100 5.5 62.24 -123.95 76.5 75.81 432 1436 94
GDH 85 12 24 413212 100 50 7.53 .33.88 63.0 38.65 -39.01 3502 23
3

KONO 86 2 1223:41:385 150 52 1730 6241 661 43.78 -39.03 442 16
GAC 8 3 6 0:5383 350 62 4033 51.60 821 64.38 6.78 277.1 53
RSON 8 3 6 0:5:383 350 62 40.33 S1.60 842 73.02 4.11 2894 6.6
RSNT 8 S5 S 3:35:388 150 58 37.72 37.70 777 73.68 839 3217 24
NEI6 8 S 72043326 231 6.1 51.60 -174.65 83.0 87.01 -1501 1609 2.5
NEI6 8 S 712247:102 313 65 51.33 -175.43 83.3 87.69 -12.41 163.8 34
NEI0 8 S 7 22:47:102 313 635 51.33 -175.43 859 8529 -29.17 149.2 6.2
RSON 86 5 13 844:20 150 5.6 41.03 4392 813 7026 -11.96 2858 43
RSSD 86 S 21 1:45:248 150 52 1490 2002 75.5 37.05 -54.45 296.6 6.3
GAC 86 5 221952195 332 5l 34.12 2672 740 5294 -18.29 2824 09
RSNY 8 S 22 19:52:19.5 332 5.1 3412 26.72 74.1 52.13 -18.61 2810 05
GRFO 8 6 9 217:383 495 50 54.59 -168.10 76.1 88.50 147 1699 14
NEI3 8 6 11 134833 200 60 10.70 6293 59.1 2177 3723 599 6.2
TOL 8 6 11 13:48:33 200 60 10.70 -62.93 594 2841 -3748 586 06
NEIl 8 6 11 13:48:33 200 6.0 10.70 6293 617 29.75 -3691 574 32
BCAO 8 6 11 13:48:33 200 60 10.70 6293 808 9.94 -21.85 948 28
RSCP 8 6 1523:58:441 150 50 1.16 2646 64.5 20.87 -52.67 304.1 44
RSON 8 6 .7 848186 150 54 455 -32.55 68.5 31.15 -55.56 316.1 1.4
WFM 86 6 24 656:530 150 57 033 -17.41 639 23.86 -40.00 3134 34
RSNY 8 6 24 6:56:530 150 57 0353 -1741 668 25.19 -40.74 3138 44
GAC 86 6 24 656:530 150 57 033 .17.41 678 2591 -40.81 3145 69
RSCP 8 6 24 6:56:53.0 150 57 033 .17.41 720 2144 4749 3014 102
GAC 8 7 10 6:53:43 150 5S4 431 .32.49 556 26.56 -50.00 3199 6.3
RSON 8 7 10 6:53:43 150 54 431 3249 688 31.03 -5552 3162 7.1
RSSD 8 7 10 6:53:43 150 54 431 3249 738 28.83 -61.57 3060 59
GRFO 86 7 18 17:22:416 150 5.8 1084 £9.24 757 3697 -3890 542 12
GRFO 8 8 722:32:509 150 54 7353 .81.06 858 37.55 <4727 543 1.0
GAC 8 9 1317:24:337 150 58 3680 2264 698 53.15 -2191 2798 3.9
RSNT 8 9 13 17:24:33.7 150 5.8 36.80 2264 753 69.40 -11.53 3123 3.9
ANMO 86 9 20 1:31:140 150 54 0.72 22900 793 2234 -63.18 2982 16
RSNY 8 10 2 10:12:39.8 150 53 34.65 29.16 752 53.13 -17.46 2805 7.1
ZOBO 86 10 27 0:9:319 150 53 46.06 22727 722 1583 -51.12 2085 3.2
KONO 86 10 27 14:11:580 150 52 7.26 3620 627 3538 -21.13 298 1.5
GAC 86 12 7 14:17:10.5 150 5.1 43.01 26.01 67.5 57.08 -23.10 2732 3.9
ZOBO 86 12 8 3:3:261 150 5.1 47.72 2770 732 1668 -51.61 2073 14
GRFO 87 1 1313:23:59.7 150 55 5.68 7890 858 3599 4585 53.0 5.0
GRFO 87 1 1319:30:109 150 53 587 .78.86 856 36.10 4581 531 10
GDH 87 2 1 656:12 150 56 0.5 -17.47 727 3592 -26.67 3443 13
NEI4 87 3 6 410419 150 65 -006 7784 775 2276 4563 585 22
GAC 87 3 1223:10:314 150 54 036 .1781 677 25.77 4104 3148 64
GAC §7 4 14 0:13:131 150 53 -1496 1474 815 1759 -39.72 3212 3.6
SCP 87 S 510:50:553 150 50 -0.11 .18.78 67.1 2301 -43.84 3099 3.6
GAC 87 5 510:50:553 150 50 -0.11 .18.78 67.5 2542 4165 3155 43
GDH 87 S 5 10:50:553 150 50 -0.11 18,78 73.1 3550 -27.66 3449 5.0
GAC 87 7 28 144:97 150 50 102 2562 623 2539 -45.83 318.0 0.6

5i* = Differential atienuation between the S and SS phases
Other abbreviations as in Appendix I
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